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Abstract

Emerging plasma technologies, such as plasma medicine, rely on the transport of
plasma species across gas-liquid interfaces to achieve their function. Recent studies
have identified that, while poorly understood at present, electron transport through
the interface is an important driver of plasma chemistry in plasma medicine. In order
to understand this fundamental transport, so to facilitate understanding and future
optimisation of plasma technologies, a modeling framework for electron transport
simulations across gas-liquid interfaces has been developed. This modeling framework
has been been applied to noble liquids, such as argon and xenon, and the first steps
have been made towards application to a biomolecule system involving tetrahydrofuran.

This research has extended previous approaches to electron fluid modeling in the
gas phase to propose a fluid model for electron transport in gas and liquid media based
on four moments of the Boltzmann kinetic equation. The model was benchmarked
against kinetic solutions of electron transport to validate the applicability of the model
to describe non-local electron transport phenomena in both gas and liquids, given that
appropriate and accurate input data is available. To assess the impact of employing
steady-state collision and closure input data in electron fluid models, non-equilibrium
velocity distribution functions, computed via multi-term solution of the Boltzmann
equation for benchmark calculations, were studied.

The dependence of the proposed model’s input transport data on the background
medium density was examined in this research. By examining how electron momentum
and energy transfer occurs due to collisions in gas and liquid extremes, an approxima-
tion method was proposed to generate input transport data at intermediate densities
for which data is required, but not available, for modeling interfacial transport. The
proposed approximation was benchmarked against analytic simple liquids and experi-
mental data measured in cryogenic argon and xenon to verify the applicability of the
proposed approach.

Simulations of electron transport between gas and liquid argon, and vice versa, was
performed by applying both the proposed fluid model and input data approximation
method. Comparisons of the abilities of modeling methods to resolve realistic non-
local transport were studied, and the stark differences between using electron-liquid
transport data compared to simply scaling up electron-gas transport data were discussed.
Application of this modeling framework to dual-phase simple liquid particle detector
apparatus was demonstrated.

Finally, application of the developed modeling framework was made to electron
transport in tetrahydrofuran. To do so, a complete gas phase electron scattering cross
section set was assembled and analysed using available experimental and theoretical
data. Modifications of gas phase scattering to a simulated liquid phase were made using
available experimental data. Comparison of streamer formation and propagation in both
gaseous and simulated liquid tetrahydrofuran was studied to demonstrate applicability
of the framework developed in this research to electron transport in biologically relevant
soft-condensed matter.
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1
Introduction

1.1 Scope, motivation, and applications

Low temperature, non-equilibrium plasmas are generally defined where typical electron
temperatures, Te, are much higher than equilibrium ion, Ti, and background neutral
species temperatures, T0 [33]. Typical plasma neutral densities, n0, are on the order of
1024 m−3, and ionisation rates are typically ∼ 1% [33,34]. Some well known examples
of natural and man-made plasmas are shown in Figure 1.1, where the scope of low-
temperature plasma electron temperatures and densities, ne, are denoted.
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Figure 1.1: Electron temperature versus density landscape of typical natural and
man-made plasmas

For decades the use of low-temperature plasma processes has allowed modern society
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to prosper, primarily through the application of microelectronic device manufacturing.
Alongside other manufacturing methods, such as wet chemical etching or lithographic
methods, plasma etching of silicon, oxides, and metal substrates forms a vital step in
the manufacturing process of complicated microelectronic devices that have formed the
foundation of the technological revolution. In addition to highly profitable applications,
such as microelectronic circuit manufacture, low-temperature plasma discharges are
commonly found in nature when lightning forms and propagates through the atmosphere
as outlined in Figure 1.2.

Leader
channel

Streamer
filaments

Branching

Figure 1.2: Lightning propagation demonstrating streamer filaments branching from
the leader front

In these discharges, following an initial seed ionisation event, such as a spark, the
high energy streamer tip (leader) propagates through space creating further electron/ion
pairs at the front of the discharge. In doing so, the newly created charged particles
render the space behind the propagating streamer front electrically neutral. As the front
progresses, and further ionisation events occur, rapidly moving electrons can branch
into essentially vacant regions of space and continue propagation of the discharge via
transient filament branches.

Despite massively different length scales, both lightning and laboratory or industrial
low-temperature plasma discharges are governed by the same underlying physics. Some
present industrial applications of these discharges are in air purification or ozone
generation, where high energy electrons are used to initiate the desired chemical
reactions without having to expend a great deal of energy that would normally be
required to heat up the entire body of gas [35–37]. A further use of streamer discharges
is in the generation of so called “plasma bullets”, which are presently finding application
in medical treatments.

While the previously discussed applications have focused on gas phase applications,
there are some applications that employ gas-liquid interfacial transport to exploit the
differences in liquid phase transport compared to gas phase. Liquid phase particle
detectors are one such application, and they are used to detect ionisation events in
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dense cryogenic liquids, such as argon or xenon, caused by (anti)neutrinos or weakly
interacting massive particles (WIMPs) in the search for dark matter [38–41]. Large
volumes of noble liquids are used for this purpose to take advantage of high liquid
densities so to increase the probability of a desired particle interaction. In practice,
dual phase configurations are often used to assist in extraction and detection of the
desired ionisation events.

Dual phase detectors function by applying an external electric field across the device
to extract electrons from liquid to gas, after which they are accelerated through gaseous
electron multipliers (GEMs) that subject electrons to strong electric fields [39], outlined
in the schematic in Figure 1.3. From the initial weak ionisation signal, an electron
avalanche is produced through the GEM stage and a significant current is measured
through the external observation equipment to indicate the detection of a collision
event. In this thesis, the application of dual phase particle detectors is used as one
motivator to study electron transport across the gas-liquid interface.

Cathode

Liquid
phase

Gas
phase

GEM

GEM

Ionization
event

Ionization
signal

Current
trace

Figure 1.3: Dual phase particle detector schematic diagram.

At the nexus of gas and liquid discharge applications is the emerging application of
plasma medicine [42–46]. One avenue of plasma medicine focuses on the treatment of
solid surfaces, materials and devices in order to sterilise them or enhance their properties
for medical purposes; for example, sterilisation of stainless steel surgical tools. Another
focus of plasma medicine is the direct application of plasmas, or their products, to tissue
with the aim of initiating biological responses for therapeutic treatment of infected
wounds, skin conditions, and surgical incisions and haemorrhages. Generally, biological
effects are divided into lethal or non-lethal. Lethal outcomes are the inactivation of
microorganisms or cells, such as bacteria. Non-lethal outcomes can include metabolism
stimulation, cell proliferation, or cell detachment from matrix complexes [6].

With a focus on treatment of tissue, by striking a balance between lethal and
non-lethal effects, the overall aim of plasma medicine treatment is to use near room
temperature, ambient pressure plasmas, shown in Figure 1.4, to first cauterise the area
and then stimulate tissue regeneration and healing via beneficial metabolic reactions
induced by reactive oxygen or nitrogen species (RONS) delivered via the atmospheric air
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based plasma [42,46]. Multiple laboratory and clinical studies have been performed in
order to gauge the efficacy, and importantly the safety, of plasma medicine treatments,
with prototype devices such as the kINPen developed by INP Greifswald, shown in
Figure 1.4, leading this clinical field of study.

Figure 1.4: As an example of experimental plasma medicine apparatus (Left) APPJ
plasma jet source, and (Right) kINPen prototype presented by Höntsch et al. [6]

Through the interaction of gas phase plasmas and dense soft tissue a wide array of
physical processes occur during application of a plasma medicine treatment. Transfer
of charge, mass, and energy via bombardment of reactive and excited species, charged
particles, metastables, grounded neutrals, and photons generated from the low tem-
perature plasma couple with absorption and emission from the surface of tissue to
form a complex interfacial environment outlined in Figure 1.5. The penetration of the
electric field into tissue has also been identified as a possible key variable in terms of
moderating patient thermal tolerances, and also the types of reactions that may occur
within a short depth into the tissue layer [47].

Plasma

Ions &

electrons

Electromagnetic

fields

Excited species

UV radiation

Thermal

radiation
Visible light

Proteins

DNA

Tissue

Cells

Interactions between

plasma and surface

Figure 1.5: Plasma medicine schematic diagram demonstrating the array of physical
processes that can occur throughout a typical plasma medicine treatment

A framework to analyze, understand, and improve how low temperature plasma
interacts with soft condensed matter is essential to improve efficacy and understanding
of emerging interfacial plasma technologies [47] and is a driving factor behind this
current study.
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1.2 Liquid transport modeling studies

In comparison to gas phase modeling, in liquid systems and discharges there considerably
more complex processes involved, such as structure effects, electron solvation and
evaporation, that make a comprehensive modeling approach difficult [48–53]. There
have been various approaches to modeling free electron transport in atomic liquids,
generally varying in the way structure effects such as electron coherent scattering and
long-range interaction potentials are defined [54–56]. Foundations laid by Lekner [57],
and later extended by the groups of Atrazhev [58–61], Schmidt [54,62], Sakai [55,56], and
Borghesani [63, 64], describe approaches to providing the effective scattering potential
that the electron sees within the liquid. Recent Monte Carlo studies [65] have presented
advances in modeling electron transport in atomic liquids through accommodation of
coherent electron scattering effects.

In addition to fundamental electron transport in atomic liquids, modeling studies
of liquid discharge and plasma-liquid interface applications have been undertaken. To
simulate transport in liquids, some recent studies have used electric conductivity and
permittivity changes between model material phases [50], density scaled gas phase
electron diffusion coefficients [49,53], or constant empirical transport coefficients and
rates [52,53] to provide new understanding of plasma species transport at gas-liquid
interfaces. While previous pragmatic studies have provided some insight to important
plasma applications, the incorporation of accurate, fundamental liquid transport physics
into existing “gas phase models”, in order to describe liquid discharge and plasma-liquid
interface applications, presents an open question for research.

1.3 Kinetic theory and the Boltzmann equation

In the previous sections it was highlighted that low-temperature plasmas are central to
many natural and man-made processes and applications, and contain many complex
physical phenomena. As science and industry seeks to improve performance of processes,
such as plasma medicine or dual-phase particle detectors, the ability to provide accurate
predictions of discharge properties becomes crucial. To acquire deep understanding
of charged particle transport within such systems, mathematical descriptions of the
complex transport and collision physics have been developed. The most detailed
descriptor of charged particle transport within a plasma is the phase-space distribution
function, f (r,v, t), which describes the evolution in time, t, of charged particles
through phase space, (r,v). The science of formulating and solving the charged particle
distribution function is kinetic theory.

1.3.1 The Boltzmann equation

The Boltzmann equation [66] is a continuity equation in phase space and takes the form

∂f

∂t
+ v · ∇f + a · ∇vf = −J (f) , (1.1)
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where ∂f

∂t
describes the local time rate-of-change of the distribution function, v · ∇f

describes variation of the distribution function due to particles streaming in and out
of volume elements in position space due to pressure gradients in phase space. The
a · ∇vf term describes the variation of the distribution function due to external forces
acting on the particles, often due to electromagnetic fields. The collision operator,
J (f), seeks to describe the change in the charged particle distribution function due to
all types of particle collisions with all targets within the system.

The current state-of-the-art methods for solving (1.1) are accurate multi-term
solutions [5, 10, 48, 67] found by decomposing f (r,v, t) to separate the speed and
velocity angular component, v̂, via a spherical harmonic expansion

f (r,v, t) =
∞∑
l=0

l∑
m=−l

f (l)m (r, v, t)Y [l]
m (v̂) , (1.2)

where Y [l]
m (v̂) are spherical harmonics as a function of angles v̂. If a symmetry exists

in the problem geometry, for example through an electric field being applied in plane-
parallel configuration, then simpler expansion functions, such as Legendre polynomials,
Pl, can be used instead of spherical harmonics [10].

Depending on the system under investigation, further expansions are often required.
If the system is in a hydrodynamic regime, where only small space-time gradients persist,
then it is common to represent, or project, the spatial dependence via gradients of the
electron density, ∇kn. For systems in a non-hydrodynamic regime, a density gradient
expansion may not be sufficient to resolve complex transport phenomena. In this regime
the space dependence must be treated at the same level as the speed or time and
full representations of the space dependence are required. Independent of the spatial
dependencies, representation of the speed dependence is required and various options
exist [10,48,68,69]. The solution process always aims to yield a coupled hierarchy of
equations that can be numerically solved to yield the expansion coefficients f (l)m of (1.2).
When a distribution function is known, measurables and transport coefficients, such
as drift velocity, W , and longitudinal and transverse diffusion coefficients, DL, DT ,
previously mentioned, can be computed via appropriate velocity integrals over the
distribution function. For example, the simplest transport variable is the electron
number density n (r, t) =

∫
f (r,v, t) dv.

While very accurate, the numerical solution of the Boltzmann equation in multidi-
mensional phase space is computationally demanding and there are a number of other
factors that limit the application of this method for low-temperature plasma modeling,
including (i) the combined complexity of evaluating the collision integral at each time
step while transporting the solution in position and velocity space, and (ii) for non-
trivial geometries the numerical implementation, including boundary conditions, is very
difficult [10, 68, 70]. As a result, the use of kinetic methods for low-temperature plasma
simulations has not been employed in this study, however existing codes developed
from the kinetic solution framework of Boyle et al. [10] were utilised to generate input
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data for fluid models used in this study.

1.3.2 Collision term and scattering cross sections

All collision processes can be described mathematically by a differential cross section,
σ(g, θ) where g is the relative velocity between two colliding particles in the centre-of-
mass reference frame and θ is the angle at which the incoming particle is scattered
from the target in the centre-of-mass frame. Scattering cross sections can be obtained
experimentally, through scattering or unfolding swarm experiments [4, 71–73], or from
quantum mechanical calculations [74,75]. A differential cross section is a measure of
the probability that an incoming particle of a certain energy (such as an electron)
interacting with a target particle for a given collisional process is scattered through an
angle θ, into a solid angle dΩ [76]. If one integrates the differential cross section over
all solid scattered angle elements then the total cross section of a process can be found
to be

σ(g) = 2π

∫ π

0
σ(g, θ) sin θdθ.

Electron scattering cross sections are functions of the relative speed, g. It is also
common to write dependence as a function of the centre-of-mass energy, ε = 1

2µg
2,

where µ = mem0
me+m0

is the reduced mass of the electron-target system for electron mass,
me, and neutral target mass, m0.

To evaluate the collision operator, J (f), on right-hand-side of (1.1), the semi-
classical collision integral of Wang-Chang-Uhlenbeck-deBoer [77] is often used for the
rate of change of f due to conservative collisions, allowing for transitions in internal
energy states of the neutral molecular targets due to inelastic collisions, j → j′,

∂f

∂t
+ v · ∇f + a · ∇vf =∑

j,j′

∫
d3v0

∫
d2Ωg′gσ(j, j′;g,g′) [f(r,v′, t)f0(r0,v′

0, t)− f(r,v, t)f0(r0,v0, t)] , (1.3)

where subscript 0 denotes quantities of the neutral background, superscript ’ denotes
post-collision quantities, d2Ωg′ denotes the solid scattering angle, g the relative velo-
city in the centre of mass frame, and σ(j, j′;g,g′) is the electron-neutral differential
scattering cross section which serves as the microscopic input to this solution method.
Additional collision operators have been proposed to compute rates of change due to
non-conservative collisions such as attachment and ionisation [76,78,79].

Within plasmas, various types of collisions occur between the various species
(electrons, ions, neutrals). A knowledge of charged particle collisions is essential to
accurately model the collision dynamics of a low-temperature plasma. For the types
of plasmas investigated in this study, the collisions of primary concern are those of
charged particles with the target neutral species. Collisions between ions and electrons
themselves may occur, through recombination or Coulomb scattering, but it has been
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noted in literature that for the densities pertinent to low-temperature plasmas these
scattering processes are negligible compared to neutral target scattering [76,80].

1.3.3 Electron scattering in liquids

Up to this point, the treatment of charged particle collisions with dilute gas species
has been under the assumption that each incoming particle interacts solely with one
neutral target. When gas densities, n0, are sufficiently high, or if any liquid discharge
is considered, the effects of bringing adjacent neutral targets close together must be
considered. The major scattering effects that are introduced at these densities are
coherent elastic scattering and interaction potential screening [12, 48, 57, 81]. These
density-dependent scattering effects must be considered when the incoming charged
particle de Broglie wavelength, λdB = h/p where h is the Planck constant and p is the
electron momentum, is on the order of the average intermolecular spacing n−1/3

0 [48].
For heavy charged particles such as ions the single scattering limit for dilute gases may
be used. On the other hand, when considering transport of light charged particles, like
electrons, in very dense fluids the λdB ∼ n

−1/3
0 criterion is approached and consequently

liquid phase scattering phenomena must be considered.
As the neutral density of a medium increases beyond that of a dilute gas, such as that

of a dense gas or liquid, the binary scattering approximation of an incoming electron
interacting solely with one target breaks down. In this high density regime, adjacent
neutral species experience temporal and spatial correlations between one another and
collectively modify elastic electron scattering, resulting in coherent scattering [12,15,81].
To assist in quantitatively describing coherent scattering, the single scattering classical
description must be reconsidered as a particle wave incident on multiple scattering
centres as shown in Figure 1.6, where the classical properties are translated to equivalent
wave properties of wave number, k, and angular frequency, ω,

~k = mev, (1.4)

~ω =
1

2
mev

2. (1.5)
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 ω,k

 ω',k'

Atomic targets

Focus atom

Figure 1.6: Schematic interaction of an incoming electron wave packet coherently
scattering from multiple scattering centres, instead of a fixed centre, to an outgoing
wave packet.

By now considering the electron as a wave a double differential cross section can be
formulated to describe electron scattering in a structured medium as the product of:
(i) a single particle differential cross section in the lab frame σlab

(
|∆k| , k̂′

)
, and (ii)

the dynamic structure factor, S (k,∆ω) [82]

dσ

dk̂′dω′
= σlab

(
|∆k| , k̂′

)
S (k,∆ω) , (1.6)

where k̂ is the unit vector denoting wave number direction, ∆k = k − k′ is the change
in wave vector, and ∆ω = ω−ω′ is the change in energy due to the coherent interaction
with the structured medium.

The single particle differential cross section, σlab, is related to the interaction
potential experienced by a single incoming electron, which may experience modifications
from the gas phase cross section due to collective potential screening effects to be outlined
in the next section. The dynamic structure factor is defined as the Fourier transform
of the space-time pair-distribution function. In practice, however, one can evaluate the
effects through a knowledge of the static structure factor, S (K), through expanding
S (k,∆ω) about a small relative energy exchange, ∆ω/1

2mev
2 [48]. The static structure

factor, S (K), is computed via the Fourier transform of the pair correlation function,
which can be obtained analytically for simple interaction potentials [83], from molecular
dynamics simulations [84], or measured experimentally through neutron scattering [85].
The static structure factor provides information on how spatially correlated scattering
centres are in the dense medium; ideal limits of static structure factors for the three
states of matter are demonstrated in Figure 1.7.
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Figure 1.7: Typical static structure factors for gas, liquid, and solid (crystal) states of
matter, where d is the crystal interatomic distance.

Only elastic collisions are coherent in nature, and hence influenced by the structure of
the medium. In inelastic collisions, such as excitation or ionisation, energy is transferred
on a localised site during scattering, which makes a particular target atom/molecule
distinguishable from its neighbours. As a result these scattering events are incoherent
and interference effects are not considered [15, 48]. There is an analogous effect for
inelastic collisions, which is due to collective excitations. This occurs when the excited
state in the liquid can be delocalised across several molecules; this effect can be seen in
electron energy loss spectra [41,63,81].

In addition to the effects of coherent scattering on electron transport in liquids,
the screening of the electron-neutral interaction potential must be considered. This
screening effect occurs because more than one neutral particle is significantly polarised
by the charged particle at any time. Overlapping polarisation fields act to screen
the polarisation field of neighbouring polarisable neutral particles overlaps and acts
to screen the long-range polarisation potential felt by an incoming electron. These
effects and modifications have been recently studied for simple atomic liquids [12,15]
by extending the formalism of Lekner [57] to compute an ensemble average potential,
that accounts for the collective effects of static and polarisation fields of nearby atoms
on a fixed scattering centre. This ensemble average interaction potential is then used
to compute an appropriately modified single-scattering differential cross section, σlab,
introduced in the previous section. Recent studies of simple atomic liquids have applied
an ab initio method to accurately account for these liquid scattering effects in the
calculation of electron interaction cross sections [12,15,81].
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1.3.4 Alternative stochastic modeling methods

While solution of the Boltzmann equation provides a deterministic approach to com-
puting the phase space particle distribution function, stochastic methods are often
employed to simulate collision dynamics and track the evolution of the charged particle
distribution function in a low-temperature plasma. Stochastic simulation methods for
low-temperature plasmas generally include Monte Carlo (MC) methods [56,65,86,87]
or hybrid Particle-in-cell (PIC) models that use MC methods to stochastically predict
collision events [88–90]. Through the statistical power of having a large sample of
test particles, and running many repeated simulations for a given configuration, an
approximation to the distribution function, and hence ensemble averaged quantities
describing discharge behaviour, can be found.

The general prescription for these methods is to begin with a known number of
particles and then monitor the number, positions, and velocities of these particles as
the discharge evolves over time. These methods stochastically predict collisions to
simulate the effects of collision events on the distribution function, and deterministic
expressions for the equations of motion are used to step-forward in time to predict
particle velocities and positions

v (t0 +∆t) = v (t0) +

∫ t0+∆t

t0

a (t) dt, (1.7)

r (t0 +∆t) = r (t0) +
∫ t0+∆t

t0

v (t) dt, (1.8)

where ∆t is a sufficiently small time increment from the current time, t0, generally
limited by the process with the highest collision frequency or a Courant-Friedrich-Lewy
(CFL) condition [88].

In addition to using the equations of motion (1.7)-(1.8) for predicting a particle’s
phase-space position, the scheme will add or remove particles entering or leaving the
system boundaries. Furthermore, once transport and collision processes have been
computed, the self-consistent electric field is computed using Poisson’s equation for
the next time-step of the simulation. The program flow for a typical hybrid PIC-MC
plasma discharge simulation is given in Figure 1.8, showing the computational sequences
previously described for a hybrid scheme.

Chapter 1. Introduction 11



Garland, Nathan Electron transport modeling in gas and liquid media

Step-forward in time

Compute particle positions
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Apply boundary
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Solve self-consistent

electromagnetic fields

Figure 1.8: Computational flow diagram for a PIC-MC scheme.

Although hybrid kinetic models are rich in information of the system they have lim-
itations. It has been observed that species with slow collision frequencies for production
and loss are not easily implemented into PIC-MC simulations [33]. This is an important
limitation to recognise as simulations of plasma-liquid systems considering both gas and
liquid transport may often include large disparities in time scales. Computationally,
particle based models are limited by the number of species they can simulate, as well
as the sheer number of particles they can simulate in phase-space. As was the case for
numerical solution of the Boltzmann equation, the necessary interfacial geometry and
input data requirements in this study can add significant computational time overhead,
and as such hybrid PIC-MC models were not used in this study.

1.4 Fluid modeling of low-temperature discharges

The origins of low-temperature plasma modeling can be traced back to the work of
Ward in 1958 [91], but more recently the theoretical kinetic formulation of Robson [70]
and Boeuf [92] can be viewed as solid foundations for modern low-temperature plasma
models. The mathematical models for simulation of a plasma take many forms, each
with varying orders of accuracy and complexity. Generally as the accuracy of a model
increases so does the complexity. The balance between accuracy and complexity is
important when it comes to choosing a modeling method.

Kinetic methods yield knowledge of a charged particle phase-space distribution
function f (r,v, t). While this provides a very accurate description of transport dynamics
within a plasma, or swarm, the computational and mathematical overhead of these
methods can be quite demanding, and as a result the low-temperature plasma community
has adopted some simpler, macroscopic modeling methods as an alternative. Fluid
models describe the space-time evolution of velocity averaged quantities such as number
density, particle flux, and mean energy [92–95]. By integrating the Boltzmann equation
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(1.3) over all velocities, a generic moment equation can be generated

∂

∂t
(n 〈Φ〉) +∇ · (n 〈vΦ〉)− n 〈(a · ∇v)Φ〉 =

∂

∂t
(n 〈Φ〉)

∣∣∣∣col
, (1.9)

where Φ = Φ(v) is some velocity dependent trial function chosen to generate the
desired balance equation.

The first term of (1.9) describes the time rate-of-change of the extensive quantity
n 〈Φ〉. The second term is the divergence of a flux describing the spatial rate-of-change
of n 〈Φ〉. The third term is an effective source/sink term of the quantity n 〈Φ〉 due to an
acceleration, a, experienced due to applied forces that have no velocity dependence (e.g.
electric or gravitational fields), or velocity dependence that acts perpendicular to the
force (e.g. magnetic fields) [80]. The right hand side is a source/sink term describing
the time rate-of-change of n 〈Φ〉 due to electron-neutral collisions.

In low-temperature plasma modeling applications, the following trial functions
are often employed to generate an infinite hierarchy of coupled hyperbolic transport
equations:

1. Φ(v) = 1 → number density balance,

2. Φ(v) = mv → momentum balance,

3. Φ(v) = 1
2mv

2 → energy balance, and

4. Φ(v) = 1
2mv

2v → energy flux balance.

An advantage of fluid models as defined is that the system of equations one solves
has clear physical meaning (i.e. a momentum balance equation, an energy balance
equation, and so on) and its solution immediately yields observables of a system, such
as energy and density. Additionally, solving this system of equations is comparatively
less computationally expensive than a full kinetic solution of the Boltzmann equation,
or a PIC/MC solution over a large time period [95–97].

The downside of averaging over velocities is that it removes the ability to track
evolution of the velocity distribution. Instead, it is common to assume a form of
the velocity distribution function that is self-consistent with the observables of the
fluid equations, such as a Maxwellian, or make other assumptions in the evaluation of
collision terms [70]. Furthermore, because of the second term in the moment equation
(1.9), the flux of each quantity is found from a higher velocity moment equation. To
enable a solution, the system of equations must be closed through an assumption on
a higher order moment. Depending on the level of approximation, closure is often
formed by assuming an analytic form for the electron or ion heat flux and pressure
tensor [96,98] and therefore introduces an element of uncertainty into the model.

Various methods of closure and collision approximation commonly used in low-
temperature plasma modeling. These closure assumptions are often a point of conjecture
among the community [94–96], and present a knowledge gap in the field that this study
seeks to address.
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1.4.1 Field dependent drift-diffusion models

While a low-temperature plasma discharge can be a very complex, coupled, non-
linear system there are some simple transport concepts valid when gradients of the
charged particle density, ∇n, are small. This small gradient regime is often called the
hydrodynamic regime.

Considering electron transport, parallel to an applied electric field, the simplest
fluid model is the electron continuity equation, found by evaluating (1.9) for Φ = 1

∂n

∂t
+∇ · Γ = n(νI − νa) , (1.10)

where n is the electron density, Γ = nv is the electron particle flux, νI and νa are collision
frequencies for ionisation and attachment respectively. Recombination processes are
generally included in the right-hand-side of (1.10). For the purposes of this work
the process of recombination was neglected because comparatively low electron/ion
densities, compared to neutral atoms, results in considerably more electron-neutral
collisions than electron-ion collisions [76,96].

To close the system via the particle flux, the electron momentum balance equation is
generated by evaluating (1.9) for Φ = mv. A stationary, hydrodynamic regime is then
assumed so that temporal gradients are assumed negligible and one projects spatial
dependence onto the density gradient, ∇n, to yield Fick’s law

Γ = nWF − DF∇n, (1.11)

where WF is the electron (flux) drift velocity, and DF is the (flux) diffusion tensor, which
typically is simplified via longitudinal, DF

L , and transverse, DF
T , diffusion coefficients.

Other higher order transport coefficients proportional to higher order gradients of n,
such as skewness or kurtosis, can be invoked if one wishes to add additional terms to
(1.11) in order to describe more complicated transport behaviours using a hydrodynamic
description [99].

For a one-dimensional system where transport is parallel to the applied electric
field, the drift-diffusion equation obtained via Fick’s law closure is

∂n

∂t
+

∂

∂z

(
nWF −DF

L

∂n

∂z

)
= n(νI − νa) . (1.12)

The transport coefficients, WF and DF
L , as well as collision frequencies, νI and νa,

are now input parameters to the model. Collision frequencies are defined from the
collision cross sections and describe the number of collisions that occur per second for a
certain collisional process [76]. A collision frequency, ν, is related to the relevant cross
section, σ, via

ν = n0vσ, (1.13)
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where n0 is the neutral target atom density, v is the incoming scattering particle
velocity.

To obtain input data values for (1.12), steady-state EEDFs are computed for a range
of electric field strengths applied to the discharge medium being considered. These
solutions are obtained from kinetic solutions to the Boltzmann equation [10,94,96] or
simulated through Monte Carlo calculations [87,89,95]. Once the EEDFs are calculated,
velocity averaged hydrodynamic transport coefficients and collision frequencies are
computed using the steady-state distributions and a look-up table, shown in Table 1.1,
is formed for interpolating input data.

Table 1.1: Look-up table for interpolation of fluid model input data
E/n0 [Td] WF [m/s] n0D

F
L [1/m.s] 〈ε〉 [eV] ... νI/n0 [m3/s] νa/n0 [m3/s]

...
...

...
...

...
...

...

The most common functional dependence of collision frequencies, as well as the
transport coefficients, is to assume that electron dynamics depend upon the local
reduced instantaneous electric field strength, E/n0, [37, 96, 100] where E is the electric
field strength and n0 is the neutral background density. This approximation is often
termed the local field approximation. To evaluate the input quantities for (1.12) the
look-up table is interpolated using the instantaneous value of E/n0 at each point
in space. While pragmatic and very popular in the low-temperature fluid modeling
community [92,96,100], studies have shown that non-equilibrium transport, featuring
temporal and spatial non-locality, is poorly described by this model [93], and so
extensions of this model have been used.

1.4.2 Energy dependent drift-diffusion models

While the transport processes of the hydrodynamic regime provide an excellent entry
point for describing charged particle transport in discharges, applications of low-
temperature plasmas generally result in non-equilibrium conditions due to large spatial
gradients, perhaps due to steep field gradients or surface interactions, or rapidly time
varying applied fields, such as in radiofrequency (RF) plasmas [68, 100]. The effects
of these spatio-temporal gradients result in non-local transport phenomena, which
are so named because charged particle transport at a given point in space-time is
heavily dependent on the properties of displaced charged species and fields at previous
times, or at positions distinct from the point of interest. When non-local transport
occurs in a plasma discharge, charged particle transport no longer follows the local
instantaneous electric field strength, E (z, t), like it generally would in a hydrodynamic
regime [101,102]. In these regimes, it has been demonstrated that electron transport can
be better described by the local mean energy, 〈ε〉(z, t), rather than the field strength,
E (z, t) [93, 101].

Utilising the same functional form of (1.12), a popular extension of the local field,
drift-diffusion model is one that utilises a drift-diffusion equation for mean energy
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density, n 〈ε〉, in addition to electron number density [93, 103]. This allows the electron
mean energy, 〈ε〉, to be obtained directly, and thus used as the dependent variable
for collision frequencies and transport coefficients in lieu of the reduced electric field,
E/n0. This approach has been demonstrated to be generally more accurate in resolving
non-equilibrium electron transport, compared to local field approximations [101]. In
order to obtain the two drift-diffusion equations for both number density and mean
energy density, a closure on the energy balance equation must be used. Common
examples of this closure are discussed in the following section.

1.4.3 Higher order models

Instead of assuming negligible temporal gradients of electron particle and energy flux
required to form the previous drift-diffusion equations, recent studies [89, 95, 104]
propose to solve a more detailed set of balance equations. This often involves a system
of three or four equations for the extensive quantities of density, n, particle flux, n 〈v〉,
mean energy density, n 〈ε〉, and (less commonly) energy density flux n 〈ξ〉. To close
the system of equations, most approaches prescribe forms on the electron pressure and
electron heat flux. Electron pressure, P, is accessible by expanding the unknown tensor,
〈vv〉, in terms of the average velocity, 〈v〉, and peculiar velocity, V = v − 〈v〉,

nme 〈vv〉 = nme 〈v〉 〈v〉+ nme 〈VV〉 ,

nme 〈vv〉 = nme 〈v〉 〈v〉+ P.

Generally, models assume an isotropic electron velocity distribution function [96,105],
which yields a diagonal pressure tensor where the elements are proportional to electron
mean energy

P ≈ 2

3
n 〈ε〉 I. (1.14)

In reality the electron velocity distribution function is generally anisotropic and the
pressure tensor has perpendicular and parallel (to the applied electric field) components,
which yield two perpendicular and parallel balance equations from the electron energy
balance equation [106]. This method of resolving the pressure tensor can be considered
more accurate, although adds complexity to the computational system.

Along with the pressure tensor, the electron heat flux, Jq, is often used to truncate
the hierarchy of equations at the energy balance stage. The heat flux can be obtained
by expanded the energy flux in terms of average and relative velocities

n

〈
1

2
mv2v

〉
= n 〈ε〉 〈v〉+ nme 〈v〉 · 〈VV〉+ n

〈
1

2
meV

2V
〉
,

n

〈
1

2
mv2v

〉
= n 〈ε〉 〈v〉+ 〈v〉 · P+ Jq.

To truncate this system of equations many works [107–110] utilise (1.14) to close the
pressure tensor and favour simple, albeit physically questionable, closures for the heat
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flux. Often, a Fourier Law treatment of the electron heat flux [96,110] is used

Jq ≈ κ∇〈ε〉 ,

where κ is a thermal conductivity. Additionally, some works simply neglect the heat
flux, Jq = 0, in order to make the system of equations tenable [93,96].

Recently, a physically accurate closure ansatz of the electron heat flux has been
proposed and benchmarked for elastic and inelastic collisions [96–98] in relatively simple
collision models. While this closure ansatz was demonstrated to be accurate for analytic
collision models, application to non-trivial discharges is limited because the ansatz
requires tuning of parameters for each discharge configuration. Finally, recent studies
of Becker et al. [89, 94, 103] have indicated that in lieu of potentially non-physical,
arbitrary closures, the steady-state EEDF may be used to evaluate quantities that
require closure. Given that there is demonstrated variation amongst closure methods in
plasma modeling literature, a physically based, parameter free form of equation closure
was a focus of this study.

1.4.4 Coupling electromagnetic fields

An important part of any low-temperature plasma model is the self-consistent calculation
of electric, E, and magnetic, B, fields. Due to the creation or loss of charged particles
in a plasma discharge, the electromagnetic field variation throughout the plasma must
be self-consistently solved by coupling Maxwell’s equations where required. For the
low-temperature plasmas considered in this work the presence of magnetic fields is
generally ignored, requiring the instantaneous electric field, E, to be computed via

∇ · E =
ρq
ε
, (1.15)

E = −∇V, (1.16)

where ρq is charge density, ε is the dielectric permittivity of the discharge medium, and
V is the electric potential. When simulating gaseous, liquid, or interfacial discharge
configurations, an appropriate dielectric constant for a given medium is required. This
is particularly important when coupling electromagnetic fields to a transport model,
especially in plasma medicine applications where air and tissue dielectric properties are
vastly different [50,111].

1.5 Modeling packages

There are a range of preexisting plasma modeling packages that the low-temperature
plasma community have developed or adopted. A popular commercial software is
the COMSOL Multiphysics software package, which has a range of plasma modules
that provide some basic plasma modeling functionality [112]. In addition to general
multiphysics packages, specific plasma modeling packages have been written by experts
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in the field to enable the wider plasma research community to use their models and
codes, some examples of this are the plasmaFOAM [113] module adapted from the
openFOAM computational fluid dynamics (CFD) software [114], and the PLASIMO
software [115] developed at the Eindhoven University of Technology.

While there are a range of excellent existing packages that provide modeling options
for low-temperature plasmas, for the purposes of this research the preference was
to develop original implementations of numerical algorithms and code necessary to
solve the system of electron transport equations used in this work. This decision was
primarily influenced by the time and length scale variations that are present in the
multiphase problem addressed in this thesis.

1.6 Benchmark methods

In order to validate the accuracy and application of proposed low-temperature plasma
models there are essentially three broad sources of validation for model output: experi-
ment, analytic expressions, and other models. For this work, focusing on application of
multiphase and interfacial electron transport, there are very few available experimental
measurements that can be used to validate model output. As such, alternative model
output and analytic expressions in certain limits must be used.

1.6.1 Experimental validation

Experimental investigations may be performed, in which a discharge is established and
various environmental or control parameters are adjusted to assess how the discharge
responds to well defined changes. Experimental studies of specific plasma applications
serve as good feedback mechanisms for improving predictive models of that application
by informing theoreticians of the accuracy, or inaccuracy, of their proposed model.
The feedback loop between experiment and theory has been well supported in the
low-temperature plasma community, from the first Gasesous Electronics Conference
(GEC) reference cell proposed in the 1990s [88,100], to the recent more sophisticated
reference systems that have been proposed by the community for applications such as
plasma medicine via the COST-Jet [116].

1.6.2 Validation against kinetic solutions

Previous low-temperature fluid model studies have demonstrated the utility of bench-
marking proposed fluid models against solutions obtained through accurate (i) kinetic
solution of the electron distribution function via the Boltzmann equation, or (ii) Monte
Carlo simulation of the distribution function [89,90]. Benchmarks of this nature are
typically performed by specifying a well defined, simple system configuration to simu-
late. Simple benchmarks are preferred because this allows complex physical transport
processes to be isolated, in order to (i) avoid ambiguity when analysing solutions for a
given system, and (ii) allow targeted analysis of solution methods for certain transport
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mechanisms, e.g. studying collisionally conservative systems to ensure numerical con-
servation is obtained. In this work both kinetic and Monte Carlo methods, developed
previously by the JCU transport modeling group [10,48,65], were utilised to provide
validation against fluid model solutions for simple benchmark problems.

Classic benchmark problems include:

• the hard-sphere model - where a constant momentum transfer cross section is
assumed, often with one inelastic excitation process added [48,70],

• the Maxwell model - where a constant collision frequency is assumed, yielding a
cross section that varies as the inverse-square-root of incoming electron energy [70],

• the Lucas-Salee model - where a weighted combination of an inelastic excitation
and electron ionisation process is defined to study non-conservative transport
effects [117], and

• the Percus-Yevick simple liquid model - defined as a modification to a gas-phase
collision model to add elastic coherent scattering described by an analytic static
structure factor [65,83].

1.6.3 Analytic time of flight solution

For a limited range of problem definitions, analytic solutions can be found to the
governing transport equations. Most analytic solutions focus on developing an expression
for the number density of charged species in a simple weak-gradient, hydrodynamic
regime [96]. Temporal variation is sometimes ignored in favour of a simpler, steady-
state solution [33], although time-dependent solutions have also been considered [118].
Although limited in practicality, an analytic solution offers a known basis for which vital
benchmarks of numerical solvers can be made. Details of the analytic solutions used to
benchmark numerical methods in this project are found in the Appendix Chapter A

1.7 Use of swarmexperiments towards low-temperature

plasma modeling

In addition to experimental studies of specific configurations of plasma discharges,
swarm experiments are a vital part of the low-temperature plasma field [72,119,120].
Swarm experiments [72, 121, 122] are multiple scattering experiments as opposed to
the single scattering beam experiments, requiring particle, momentum and energy
balance for the entire ensemble of electrons in the swarms. Furthermore, the velocity
distribution of the electrons is unknown and must be determined from transport theory
in order to link the cross sections to the transport coefficients and properties

The two main configurations of swarm experiment used extensively are time of
flight (ToF) [123], described in Figure A.4, and Townsend apparatuses [124]. ToF
experiments typically measure the time it takes for a swarm of electrons to drift the

Chapter 1. Introduction 19



Garland, Nathan Electron transport modeling in gas and liquid media

length of the apparatus in order to extract electron mobility, diffusion coefficients, and
the net non-conservative collision frequencie, while Pulsed Townsend (PT) experiments
measure the arrival time spectra of the swarm to access slightly different measurables
such as Townsend attachment and ionisation rates. Similar to the PT experiments is
the Steady-State Townsend (SST) apparatus, where a constant source of electrons is
emitted and measurement is conducted once an equilibrium has been reached.

While swarm experiments were initially designed to extract cross sections, in
recent times this has changed. Swarm experiments are now used to either determine
transport coefficients directly as input data for fluid models, or to act as experimental
verification/testing of scattering cross section accuracy and completeness by comparing
the measured transport coefficients with those calculated from a proposed cross section
set [72,125,126]. An additional use of swarm experiment measurements is to provide
an experimental benchmark for low-temperature plasma modeling methods in the limit
of no space-charge fields.

To determine transport coefficients in the hydrodynamic limit, the ToF experiment
yields currents and these can be interpreted using the drift-diffusion equation (1.12)
referenced to the centre-of-mass of the swarm [76]. This data is referred to as bulk
transport data. The coefficients measure centre-of-mass drift velocity of the swarm, as
well as the spread about the centre-of-mass (i.e. diffusion) [68]. In addition to bulk
transport properties, there are flux transport properties. These flux properties arise
from Fick’s law [76], and the relationship between the two, when considering drift
velocity and diffusion, can be expressed as

W = WF +∆Wr

D = DF +∆Dr,

where the subscript F represent flux transport measurements and subscript r denote
explicit correction terms, due to non-conservative contributions of reaction collisions,
to the motion about the centre of mass.

Swarm experiments in liquid are not as common as those for dilute gases due to the
increased experimental difficulties of storing and measuring transport through liquids
compared to gases [54, 62]. This study makes use of the results generated during a
relatively rich period in the late 20th century where use of cryogenic atomic liquids in
particle detector applications led many experimentalists to measure transport properties
of electrons in dense non-polar liquids such as xenon, argon, and krypton [55,60,63,127].
It is anticipated that future liquid phase swarm and scattering experiments will be
performed in order to facilitate improved understanding of the nuances of charged
particle transport within liquid phase.
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1.8 Electron transport data in biomolecules

While the modeling methods previously discussed in this introduction are the primary
focus of this study, input data describing electron transport in biologically relevant
materials is an essential component of a framework to describe plasma-tissue interactions.
Ideally, information about electron transport in human tissue would be used for transport
studies, but this is not available owing to the complex make-up of tissue. As a way to
simulate human tissue, surrogate biomolecules have been identified for study so that
they may be combined with water in a mixture of compounds, summarised in Figure
1.9, that collectively offer a better description to tissue than simply using density-scaled
water vapour, which is the current standard [128,129].

DNA

Proteins

Lipids

Sugars

Water Not required*

* As scattering cross sections and transport properties of water are comparatively

well known, compared to complex bio-molecules, a simpler analogue is not required

Some components
of tissue

Component

analogues

Goal for tissue
analogues

Current tissue
analogue

Figure 1.9: Summary of the ultimate goal of a tissue analogue input data for simulations

Electron transport in biological matter, stimulated by ionizing radiation or plasma
medicine technologies, is of significant interest as it has been observed that low-energy
electrons thermalize in human tissue through a variety of energy transfer collisions with
water, sugars and the DNA bases. Although low in energy, sub-ionisation electrons
have been shown to be a source of DNA damage [130]. For example, the process of
dissociative electron attachment (DEA) can lead to single and double strand breaks
directly, or indirectly through the formation of free radicals which interact with the DNA.
The pioneering study of Sanche and co-workers [130,131] has subsequently motivated
much research into electron collision processes with sub-units and constituents of the
mioties that constitute DNA and RNA.

A quantitative understanding of the transport of low-energy secondary electrons in
human tissue is key to understanding the impact of both plasma and nuclear medicine
applications, and will inform dosimetry models. Consequently, databases are required
for electron induced processes in biomolecules for track simulations and transport
studies. Water is generally assumed as the surrogate for human tissue, and recently
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full/complete sets of cross sections have been developed and tested for electron-water
interactions in the gas-phase [128,129]. Recent work has suggested that such gas-phase
studies can be adapted to the soft-condensed phase through appropriate modifications
using pair correlations functions [67, 132]. While there has been much progress in
the study of electron induced processes in the sugars and DNA bases, they have not
developed to the same level of completeness as is the case for water. While DNA is
currently not convenient to study, tetrahydrofuran (THF - C4H8O) has been investigated
as a model for low-energy electron interactions with 2-deoxyribose, a sugar that links
phosphate groups in the DNA backbone. Considerable progress has been made in
recent times establishing individual cross sections for electron impact processes in
THF, at both the integral and differential levels. Experimentally, there have been
measurements of the total [18,20], (quasi-) elastic [22,24,27,133], vibrational [27,28,134],
electronic excitation [31, 135] and ionisation [23, 30] cross sections over a range of
energies. Likewise, theoretical treatments using R-matrix methods [136], the Schwinger
variational method [25,137], the complex Kohn variational method [138] and binary
encounter-Bethe approach [29], the independent atom model (IAM) [29] and the recent
IAM-screening corrected additivity rule (SCAR) treatment [19, 21] have provided
complementary information to the experimental data. Until the current work there has
been no study on the accuracy and completeness of the entire cross section set.

1.9 Research goals of this study

A number of present technologies hinge on knowledge and understanding of the transport
of low-temperature plasma species in both gas and liquid phase media. In addition
to transport in homogeneous fluid phases, applications such as plasma medicine or
noble liquid particle detectors rely on transporting species across the interface between
adjacent gas and liquid phases. The goal of this thesis is to construct a novel modeling
framework for electron transport in, and between, gas and liquid extrema, and apply
this simulation framework to electron transport in biologically relevant media.

A model of electron transport across a gas-liquid interface was chosen as the subject
of this research due to identified knowledge gaps in low-temperature plasma literature.
Possible benefits of furthering understanding of electron transport at the plasma-liquid
interface are:

• to enable tunable fluxes or energies of electrons to control reactions in the
liquid [139], and

• to provide accurate electron number density and energy loss emission/absorption
coefficients for use in macroscopic transport models [111].

The primary application that is motivating research and development of an interface
continuum model of electron transport is plasma medicine, as the rich array of surface
chemistry that occurs in the vicinity of a plasma-tissue interaction is largely dependent
on the electron dynamics in this region [52, 139, 140]. In the long term, application
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of such a modeling framework would yield better understanding of electron transport
in this context and facilitate furthering the overall understanding of the fundamental
mechanisms, efficacy, and most importantly safety of plasma-tissue treatments.

With the primary motivation of plasma medicine in mind, it is noted that a plasma-
tissue interaction is a relatively complicated physical system. In order to provide an
intermediate step to facilitate benchmarking and application of the proposed modeling
framework in this work, a secondary application of noble liquid particle detectors also
motivates this work. This application is relevant as a target for this study because the
atomic liquids used in detectors (argon and xenon) are relatively well studied materials,
compared to polar molecular liquids, and have readily available input data, making
application of the modeling framework proposed in this study achievable. To achieve
the overall goal of this research project a number of minor goals were formulated and
they are listed and discussed below.

Milestone 1: Propose and validate a model of electron transport in gas and liquid
media.

Milestone 2: Study neutral density effects on electron transport input data across
the gas-liquid interface.

Milestone 3: Perform a physically grounded interfacial simulation including swarm
and streamer propagation.

Milestone 4: Assemble electron scattering cross section set for biologically relevant
molecules, and understand streamer propagation across the gas-liquid interface.

1.10 Structure of this document

The structure of this thesis dissertation is composed of six chapters, including this
Introduction, presenting the foundations and methods applied to reach the goals set
out in Section 1.9. The majority of the content presented in this document has been
previously published in, or submitted to, peer-reviewed scientific journals. These works
are collected in this document, with minor modifications to the introductory and
concluding passages of each publication, to demonstrate the coherent and collective
achievement of this doctoral research project.

In Chapter 2, a parameter-free higher order fluid model is proposed, where applica-
tion to electron transport in both gas and liquid media is made explicit. Benchmarking
of this fluid model against accurate Monte Carlo calculations is performed in order
to validate the proposed model and highlight differences between higher order and
local field models. Some limitations of fluid equation methods are highlighted through
studying electron energy distribution functions of varying collision regimes.

In Chapter 3, the derivation and application of an approximation method to
computing n0 dependent interfacial electron transport input data for fluid models is
presented. The foundation and correspondence of this derivation in dilute gas mixture
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theory is detailed. Validation of results from the proposed method against experimental
data for simple atomic liquids, argon and xenon, highlight the applicability of the
approximation.

In Chapter 4, the previous two chapter’s components are drawn together to consider
complete interfacial simulations of streamer propagation from gas to liquid, and swarm
extraction from liquid to gas. The importance of various input data assumptions are
discussed, and the best practices for handling electron transport across an interface are
recommended.

In Chapter 5, the proposed modeling framework is applied to the biologically relevant
molecule tetrahydrofuran (THF) by first assembling a self-consistent electron scattering
cross section set from available theoretical and experimental data. Input transport data
from the most recent cross section set, in addition to a known experimental structure
factor, is utilised to perform streamer formation simulations of both gas and liquid
mediums. A comparison of the resulting transport is made.

In Chapter 6, a summary of results of this research project is presented. A reflection
and summary of the key findings of the preceding chapters are highlighted, along with
recommendations for future directions of research that should follow from this work.
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Fluid modeling of electrons in gas

and liquid

This chapter contains material that has been published in the following journal article:
[2] NA Garland, DG Cocks, GJ Boyle, S Dujko and RD White. Unified fluid

model analysis and benchmark study for electron transport in gas and liquid ana-
logs. Plasma Sources Science and Technology, 26 075003 (2017). Available online at
doi:10.1088/1361-6595/aa73c6

This chapter includes Monte Carlo simulations by DG Cocks which were used to (i)
provide input data for the original work, and (ii) provide benchmark comparisons for
output results. All other work described in this chapter is that of the author.

2.1 Chapter Introduction

Motivated by the fundamental theory and recent research efforts outlined in Chapter 1,
in this Chapter it is sought to extend a recent kinetic formulation [10, 48, 65] which
introduced a structure factor modification to account for coherent scattering effects in
dense media. Ultimately this Chapter aims to formulate and benchmark a generalized
electron fluid model, that will later be applied to modeling electron transport between
a plasma-liquid interface, where liquid processes, such as solvation, may be included
at a fundamental level via electron collision cross sections [48]. The formulation of
the fluid model for both gases and simple liquids with coherent scattering effects is
presented in Section 2.2. A parameter-free, unified steady state closure assumption is
introduced, along with a brief summary of existing closure approaches commonly used
in fluid modeling. Steady state and transient benchmarking of the electron fluid model
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against accurate Monte Carlo simulations and multi-term solutions of the Boltzmann
equation are presented in Section 2.3 to demonstrate the utility of the fluid model. From
this benchmarking, comparisons of results from the alternative fluid models presented
in Section 2.2 are shown in order to highlight significant differences that can occur
in various benchmark scenarios. Finally, a brief discussion of the impact of kinetic
effects through the electron energy distribution functions is included to rationalize the
limitations of the local mean energy approximation. Concluding remarks are detailed
in Section 2.4.

2.2 Theory

2.2.1 Fluid Modeling

The microscopic dynamics of charged particle transport in gases or liquids alike can be
described by particle-based simulations or directly solving the Boltzmann equation of
kinetic theory [81,141]

∂f

∂t
+ v · ∂f

∂r + a · ∂f
∂v = −J (f) , (2.1)

which describes the evolution of the charged particle ensemble distribution function
f (r,v, t) in position-velocity phase space (r,v) [70,102,132,142], where a is an acceler-
ation vector due to applied field (e.g. electric, magnetic, gravitational). The right-hand
side of (2.1) denotes the rate of change of f (r,v, t) due to collisions of charged particles
with neutral background particles in a gas or soft condensed medium through the
collision operator

J (f) = Jcoherent + Jincoherent = Jelas + Jinel + ..., (2.2)

which describes all possible scattering processes, such as elastic collisions, inelastic
collisions, attachment, and ionisation, through appropriate cross sections. An important
distinction between coherent (i.e. elastic) and incoherent scattering processes needs to
be made for the consideration of charged particle transport in liquid and soft-condensed
structured systems [48].

Particle-in-Cell (PIC) or Monte Carlo (MC) are the leading particle-based methods
used to simulate charged particle distributions in phase space [87, 104], while two-
term [69] or modern multi-term solutions [10,48] of the Boltzmann equation are the
leading methods that solve directly for the particle distribution.

Microscopic kinetic approaches provide very accurate descriptions of charged particle
transport but become mathematically complicated and computationally time consum-
ing for applications containing complex geometries or boundaries, multiple spatial
dimensions, or many charged species. Applications involving plasma-liquid interfaces
typical contain these complications, and so a simpler, computationally efficient modeling
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approach is sought. As such, the modeling approach chosen in this study is a fluid or
moment model [89,90,93,95,96,100,105].

Fluid models provide a description of a swarm or plasma through velocity-averaged
variables. This gives a macroscopic model of the discharge, which retains only the direct
quantities important for evolution of the system. This approach gives a significant boost
to calculation speed, while maintaining reasonable accuracy of quantities of interest.
The simplest of these variables is the number density of a species, defined as

n (r, t) =

∫
f (r,v, t) dv, (2.3)

while general velocity-averaged quantities are defined from the distribution function

〈Φk〉 (r, t) =
1

n (r, t)

∫
f (r,v, t)Φk (v) dv, (2.4)

where Φk (v) is any velocity dependent function, and 〈. . .〉 denotes the expectation
value, a velocity average over f (r,v, t).

Generally the moments of trial functions Φ1 = 1 ,Φ2 = v, Φ3 =
1
2mv

2, Φ4 =
1
2mv

2v
are performed to get balances on electron number, particle flux, energy density, and
energy density flux respectively.

The generic moment equation may be derived by multiplying the Boltzmann
equation (2.1) by an arbitrary, velocity dependent, trial function Φ(v) and integrating
over velocity space [95,96]

∂

∂t
(n 〈Φ〉) +∇ · (n 〈vΦ〉)− na · 〈∇vΦ〉 = CΦ, (2.5)

where CΦ is the rate of change of the quantity Φ due to collisions

CΦ =

(
∂[n〈Φ(v)〉]

∂t

)
coll

= −
∫

Φ(v) J(f)dv. (2.6)

Where this approach departs from classical gas phase fluid models, is that the
collision term can be written as the sum of coherent and incoherent components

CΦ = CΦcoherent + CΦincoherent. (2.7)

High densities in liquid like states require many modifications to the simple gas
phase picture, and including coherent scattering is an attempt to do so. Coherent
scattering is projected entirely onto the momentum transfer elastic scattering cross
section while inelastic collisions off different molecules are incoherent as they modify
the state of the background medium. Assuming, for simplicity, that excitations in a
dense medium are localized to individual molecules, incoherent processes are computed
by evaluating equation (2.6) with the semi-classical Boltzmann collision operator [77].
Hence, for all inelastic processes in gas or liquid media, and elastic scattering in dilute
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gases, the incoherent collision term is found via the traditional collision term

CΦincoherent =
∑
j,j′

∫
dvf (v)

∫
d2Ωg′n0vσ

(
j, j′; g, χ

) [
Φ′ − Φ

]
j,j′

, (2.8)

where indices j, j′ denote the before and after collision states due to each collisional
processes causing internal energy transitions (εj → εj′) in the neutral particle. Fur-
thermore, g denotes the relative speed between charged particle and neutral scattering
center, d2Ωg′ denotes the differential scattering angle dψdχ sinχ (where ψ is the polar
angle and χ the azimuthal angle), and σ(j, j′; g, χ) represents the partial cross section
for scattering through the azimuthal angle χ given an incoming speed g.

However, when dense mediums or low electron energies are considered, coherent
scattering effects are vital. The most general view of charged-particle interactions with
a dense medium is the scattering of a wave, representing the charged particle, by the
medium as a whole and not a single fixed scattering center. A first approximation to
the scattering is the single-scatterer approximation [82] in which the scattered wave is
the coherent sum of contributions from many scattering centers in the molecule, which
interfere to effectively produce a diffraction pattern of the medium [48]. These effects
are significant when the electron de Broglie wavelength is comparable to the average
background particle spacing, λ ∼ 1

n30
.

From the definition of the double differential cross section, the expression for the
rate of change of Φ(v) due to coherent elastic scattering is

∂

∂t
(n 〈Φ〉)

∣∣∣∣
coherent

=

∫
dvf (v)

∫ ∞

0
dω′

∫
k̂′
dk̂′n0v

d2σ

dk̂′dω′

[
Φ(v)− Φ

(
v′)] , (2.9)

where ω′ and k′ denote the angular frequency and wavenumber of the charged particle
wave after the interaction with the material. The double differential cross section is
written as a product of the single atomic differential cross section and the dynamic
structure factor [82]

d2σ

dk̂′dω′
= σlab

(
|∆k| − ω

2
, k̂′
)
S (∆k,∆ω)

where ∆k = k − k′ is the change in the wave vector, such that p = mv = ~k, and
∆ω = ω − ω′ is the change in energy, such that ε = ~ω = ~2k2

2m . Dashed quantities
refer to post-collision values. All expressions are evaluated in the laboratory frame in
contrast to the single molecule scattering case where collisions are carried out in the
center of mass frame, for interactions with many particles simultaneously this is not
possible.

Equations (2.5) - (2.9) now provide a complete framework for generating charged
particle fluid equations in both gas and liquid media alike. In the limit of high
incoming particle energies or dilute gases, equation (2.9) reduces to equation (2.8)
where S (∆k,∆ω) has zero contribution from correlations between atoms [10,48].
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2.2.2 Four Moment Electron Fluid Model

For electrons of charge qe and mass me, in a gas or liquid subject to a homogeneous
background electric field, E, such that the acceleration vector is

a =
qe
me

E, (2.10)

the first four moment equations can be derived from equations (2.5) - (2.9) by substi-
tuting Φ = 1, v, 1

2mv
2, 1

2mv
2v

∂n

∂t
+∇ · Γ = n (νss

I (〈ε〉)− νss
a (〈ε〉)) , (2.11)

∂Γ

∂t
+∇ · (nθm)− n

qe
me

E = −Γνss
m (〈ε〉) , (2.12)

∂nε
∂t

+∇ · Γε − qeE · Γ = −nSss
ε (〈ε〉) , (2.13)

∂Γε
∂t

+∇ · (nθξ)− nθm · qeE − nε
qe
me

E = −Γεν
ss
ξ (〈ε〉) , (2.14)

where shorthand variables for particle flux, energy density, and energy density flux are

Γ = n 〈v〉 =
∫
f (r,v, t)vdv, (2.15)

nε = n 〈ε〉 =
∫
f (r,v, t) 1

2
mv2dv, (2.16)

Γε = n 〈ξ〉 =
∫
f (r,v, t) 1

2
mv2vdv, (2.17)

with 〈v〉, 〈ε〉, and 〈ξ〉 being the electron average velocity, average energy, and aver-
age energy flux. Higher order tensor products θm = 〈vv〉 and θξ =

〈
1
2mv

2vv
〉

are
introduced, and require closure approximations in order to numerically solve the system.

Consistent with existing modeling literature [69,89,93,100,103,104,115,143] the
collision terms are approximated via pre-computing steady state expectation values of
reduced collision rates,

〈
ν
n0

〉
, through Monte Carlo simulations [65,87] or multi-term

solutions of the Boltzmann equation [10,48] of a steady state distribution function, and
interpolating as a function of the local mean energy.

It should be noted that in this work, input rates and closure input to follow have
been written as parameter-free expectation values over the steady state distribution
function, independent of the computational method such as MC simulation or a
multi-term solution of the Boltzmann equation. For a given method there will be
simplified expressions written in terms of isotropic and anisotropic distribution function
components. For further details, the reader is referred to previous publications on the
MC methods [65, 87] and multi-term kinetic methods [10, 48, 94, 132] used in evaluation
of the input data for this study.
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Given ionisation and attachment cross sections, σI and σa, expressions for the
ionisation and attachment rates are

νss
I =

〈
n0

√
2ε

me
σI (ε)

〉
fss

, (2.18)

νss
a =

〈
n0

√
2ε

me
σa (ε)

〉
fss

, (2.19)

where subscript fss denotes the expectation value is performed by integration over the
steady state distribution function.

The vector quantity collision rates for momentum and energy flux transfer are
computed from the steady state distribution function by normalizing the loss-rate of
each given quantity to its steady state value,

νss
m =

〈∆vνT (ε)〉fss
〈v〉fss

, (2.20)

νss
ξ =

〈∆ξνT (ε)〉fss
〈ξ〉fss

. (2.21)

where ∆v and ∆ξ denote the average change in velocity and energy flux per collision,
averaged over all possible processes, and νT is the total collision rate in the steady
state.

The energy transfer rate Sε is the lump sum of average energy losses due to all
collisional processes

Sss
ε = 〈∆ενT (ε)〉fss , (2.22)

where ∆ε is the average change of energy per collision averaged all possible processes,
including any threshold and collision energy transfer.

Steady State Closure

In lieu of assuming analytic forms of velocity distribution functions for closure ap-
proximations or parameterizing closure expressions as functions of known moment
variables, as often done in the past [96,105], it is preferred to apply steady state electron
distribution functions as recently proposed by Becker and Loffhagen [89,94,103,105,144]
to evaluate closure terms, akin to the collision input terms. Motivated by the work in
Ref [144] through equations 15a - 15d, one can utilize Monte Carlo simulations [65, 87]
or multi-term solutions of the steady state electron energy distribution function [10,48]
to generate a look-up table of closure terms

θm ≈ θss
m (〈ε〉) = 〈vv〉fss , (2.23)
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θξ ≈ θss
ξ (〈ε〉) =

〈
1

2
mv2vv

〉
fss

, (2.24)

as well as the usual collision rates, as a function of the local electron mean energy. This
model will be referred to as 4MM-SS in the remainder of this work.

Using steady state distribution closure ensures that electron transport evolves in a
manner guided by a physically motivated distribution function. In regimes that are
known to not produce oscillatory structures, due to reduced electric field and collision
cross section effects, it is believed this fluid model has a higher potential to accurately
resolve spatially averaged electron transport quantities, as demonstrated in Section 2.3.

In non-hydrodynamic regimes far from the steady state distribution detailed electron
structures, such as periodic spatial phenomena [97, 98], will be difficult to generally
replicate with this steady state closure approach, as shown by a benchmarked analytic
steady-state heat flux ansatz [96,98,105]. Despite this limitation in the steady-state
closure, it is apparent that using a parameter free, general closure assumption offers a
flexible option to the fluid modeling community as it is applicable in time-dependent
and steady state problems, and requires no tuning of input parameters or benchmarking.

Using the proposed closure approximation is sufficient to reproduce the general
evolution of space-time electron transport, in a “line of best fit” sense sufficient for
basic studies of discharges in either gaseous or liquid media. To be discussed in Section
2.3.6, the challenge of fluid models to resolve oscillatory structures lies in their inability
to resolve distribution function variations due to the local mean energy approximation,
and not in the choice of closure approximations.

Drift-Diffusion Approximations

Often low-temperature plasma modeling studies will be concerned with long-time scale
or steady state simulations [93,103–105,145], and drift-diffusion approximations (DDA)
are commonly employed. As such, this section presents a simplified version of the
previous four moment model into a two moment model consisting of the two continuity
equations for number density (2.11) and energy density (2.13) but with steady state
particle (2.25) and energy flux (2.26) expressions

Γss =
1

νss
m (〈ε〉)

[
qe
me

nE −∇ · (nθss
m (〈ε〉))

]
, (2.25)

Γss
ε =

1

νss
ξ (〈ε〉)

[
qenθ

ss
m (〈ε〉) · E +

qe
me

nεE −∇ ·
(
nθss

ξ (〈ε〉)
)]
, (2.26)

where collision and closure inputs are the same as prescribed for the four moment
model, 4MM-SS.

This approximate model is justified by assuming the relaxation collision frequencies
of the vector quantities is much faster than the time scales for energy relaxation and
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electron transport, through electric field driven advection or diffusive transport [96,118].
This model will be referred to as DDA-SS in the remainder of this work.

2.2.3 Other Fluid Models

In order to facilitate comparison of the presented fluid model using steady state closure,
three fluid models previously used in literature are briefly presented: parameterized
four moment closure, zero heat flux, and a Fourier law heat flux closure.

It is noted a method of closure through an analytic heat flux ansatz benchmarked
against an asymptotic perturbation solution of the balance equations has been proposed
[96,98]. There are benefits of this method, but concerns regarding the choices of tunable
free parameters in benchmarking new collision models, as well as the fact this ansatz is
grounded in the steady state, leads to this work preferring more generalized approaches
to closure of the balance equations. The anzatz of Nicoletopoulos and Robson [96,98]
should however motivate future work on introducing the effects of energy transfer due to
inelastic collisions into the closure of fluid models in order to model complex structures.

Parameterized Four Moment Model

In previous work by Dujko et al. [95,104,146] a four moment fluid model was presented
with focus on application to streamer propagation; this model will be referred to as
4MM-D in the remainder of this work. Functionally, this model is identical to the
four moment model presented in this study (2.11) - (2.14), but with different closure
assumptions. Closure of the momentum balance higher order term, θm, is achieved by
assuming a Maxwellian distribution [95,96] and isotropic temperature tensor in order
to yield the following standard closure expression

θm ≈ 2

3me
〈ε〉 I, (2.27)

where I is the identity tensor.
Extending this assumption to closing the energy flux balance equation, and assuming

the higher order energy flux closure term can be approximated by

θξ ≈ β

〈
1

2
mv2

〉
〈vv〉 , (2.28)

an ansatz is constructed for second closure term

θξ ≈ β
2

3me
〈ε〉2 I, (2.29)

where β is a parameterization factor nominally close to unity [95, 146]. In this study, it
was assumed β = 1 as per the author’s original work.
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Drift Diffusion Models

One of the simplest, and most popular, approaches to fluid modeling is a drift diffusion
model with hydrodynamic transport coefficients applied to a density gradient expansion
[93,96,103,104]. This approach utilizes two continuity equations for number density
(2.11) and energy density (2.13), with particle and energy density flux expressions
closing the system. Traditionally the particle flux is written

Γ = −nµ (〈ε〉)E − D (〈ε〉)∇n, (2.30)

where electron mobility and longitudinal diffusion coefficients, µ and DL in a 1D
model, are tabulated as a function of the local reduced electric field or electron mean
energy as per the collision input from previous models. In keeping with recent studies
demonstrating non-local effects in gas discharges [93,96,97,147–149], the local mean
energy approximation is used in application of these drift diffusion models in lieu of
the local field approximation.

In contrast to particle flux closure, a number of methods have been previously used
to approximate the energy density flux expression [89,93,95,96,98,100,103,104,145].
The simplest approach is to neglect the heat flux by fixing it to zero [96,104]; this model
will be referred to as DDA-Z in the remainder of this work. The zero heat flux closure
of equation (2.33) can be derived by expanding the energy density flux Γε =

1
2mn

〈
v2v
〉

using the identity

Γε = nε 〈v〉+ P · 〈v〉+ Jq, (2.31)

where P is the pressure tensor, simplified by assuming a Maxwellian energy distribution
to yield the common isotropic pressure tensor expression

P ≈ 2

3
nεI. (2.32)

If the heat flux is then assumed very small such that it can be neglected, Jzq = 0,
one can rewrite equation (2.31) by substituting for the particle flux, Γ = n 〈v〉,

Γε =
5

3
nε 〈v〉 =

5

3
〈ε〉Γ, (2.33)

where Γ is the particle flux defined in equation (2.30).
Another common approach to constructing a heat flux ansatz is by assuming a

Fourier’s law of heat conduction style closure [80,93]; this model will be referred to as
DDA-F in the remainder of this work. A Fourier heat flux ansatz may be derived by
assuming a Fourier law type relation for the heat flux

JFq = −5

3
nD∇〈ε〉 , (2.34)

such that the flux of heat transfer is proportional to some conductivity multiplied by
the mean energy gradient [80,93].
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Combining equations (2.31) and (2.34) and rewriting as a gradient of nε

Γε = −5

3
nεµ (〈ε〉)E − 5

3
D (〈ε〉)∇nε, (2.35)

where µ and D are the electron mean energy dependent electron mobility and diffusion
coefficients.

Despite being based on an analytic distribution, the closure expression (2.35) does
allow for energy density spatial gradients to induce energy transfer - an improvement
over the zero heat flux assumption. The formulation and further implications of the
Fourier law assumption are detailed in [93,96].

2.3 Benchmark Results and Discussion

Benchmarking is a valuable process in evaluating a model and the integrity of numerical
solutions. A simple benchmark case was chosen, with a simple collision model for a gas
and liquid analogue. This was done to allow comparison of the fundamental transport
effects of the fluid equations and their approximations, without introducing nuances of
real gases that may introduce phenomena specific to that molecule. A one dimensional
steady state field perturbation benchmark problem and a non-hydrodynamic transient
evolution benchmark are presented in this work. Benchmarks were performed in both
gas phase and an approximated liquid phase through modifications to the gas phase
model. The flux corrected transport (FCT) numerical method employed to solve the
systems of hyperbolic equations in this study is based on popular methods used for many
years [150–152], and is further outlined in Appendix A, along with the dimensional
scaling of variables used in this work.

2.3.1 Gas Phase Collision Model

A simple constant cross section inelastic step collision model has been studied in this
work, as per Table 2.1. The model was chosen because despite its simplicity, it can
produce physically complex results such as periodic electron structures and relaxation
behavior [98, 103, 105, 153] observed in real gases used in benchmark computations,
such as argon or neon. With the simplicity of implementation, yet complex non-
hydrodynamic transport behavior, this collision model provides a good analogue gas
for benchmarking the performance of fluid models.

Table 2.1: Constant cross section Inelastic Step Collision Model
Variable Value

σm 6Å2

σinel 0.1Å2
, ε ≥ ∆εinel

∆εinel 2 eV
m0 4 amu
me 5.486× 10−4 amu
T0 0K

Chapter 2. Fluid modeling of electrons in gas and liquid 34



Garland, Nathan Electron transport modeling in gas and liquid media

2.3.2 Liquid Phase Modification

To approximate transport in a simple, non-polar liquid-like medium a structure modifica-
tion to the gas phase collision model in Table 2.1 was performed within the computation
of steady state transport and collision input via kinetic solution or Monte Carlo simula-
tion of the Boltzmann equation [10,87,96,102]. This was done via including a static
structure modification into the momentum transfer cross section, through the Percus-
Yevick liquid model with the correction of Verlet and Weiss [65, 154]. The structure of
neutral molecules is assumed to consist of an array of hard sphere potentials interacting
coherently, with a density governed by a packing factor

φ =
4

3
πr3n0 (2.36)

where r is the hard sphere radius, and n0 is the neutral number density.
A packing factor of φ = 0 corresponds to a classic dilute gas, while the maximum

value of φ ≈ 0.64 corresponds to a maximally packed solid of hard spheres. For the
simple liquid approximation in this study a packing factor of φ = 0.4 was used [10].
Further details of this liquid phase modification in the Monte Carlo simulations or
multi-term solution of Boltzmann’s equation can be found in the recent work by the
JCU group [10,48,65].

2.3.3 Input Data

Given the collision model specified in the previous section, a collection of steady state
input data was generated via Monte Carlo simulations. By generating two sets of the
necessary steady state input data for fluid models described in this study, one each for
gas and liquid analogues, the same fluid model formulations can be used to simulate
electron transport, given the basis of the gas phase collision model in Table 2.1 and
simple liquid modifications previously outlined.

The inclusion of coherent scattering effects in the liquid phase results in variations
of the fluid model input data from the classic dilute gas picture. A comparison of the
gas and liquid phase transport input data is presented in the following figures.

Hydrodynamic Transport Coefficients

The variation of the electron reduced mobility, n0µ, and reduced longitudinal diffusion
coefficient, n0DL, between gas and liquid phase transport is shown in Figures 2.1 (a)
and (b) respectively. The increased mobility and diffusion at low energy due to coherent
scattering are clearly noted, as well as the asymptotic convergence of liquid transport
to gas phase transport at higher energies.
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Figure 2.1: Hydrodynamic transport input data for gas and liquid phase transport for
collision model in Table 2.1. (a) Reduced electron mobility coefficient; (b) Reduced
electron longitudinal diffusion coefficient

Collision Rates

The reduced collision frequencies of momentum, energy, and energy flux transfer
computed from steady state distribution functions are presented in Figure 2.2.
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Figure 2.2: Electron collision rate input data for gas and liquid phase transport for
collision model in Table 2.1. (a) Effective reduced energy transfer collision rate, νe

n0
;

(b) Effective reduced momentum transfer, νm
n0

, and energy flux transfer, νξ
n0

, collision
rates.

An inset plot in Figure 2.2 (a) is included to demonstrate deviation of the curves
within an energy range close to the inelastic threshold energy of 2 eV. For comparison,
figures also include a plot of an alternative approach to computing the reduced energy
transfer rate [48] often implemented in Momentum Transfer Theory (MTT)

νe
n0

∣∣∣∣
gas & liq

≈ 2
mem0

(me +m0)
2

νm
n0

∣∣∣∣
gas
,

Chapter 2. Fluid modeling of electrons in gas and liquid 37



Garland, Nathan Electron transport modeling in gas and liquid media

to demonstrate the importance of including a specifically computed energy loss rate,
Sss
ε , and not simply multiplying the gas phase momentum transfer rate by the mass

ratio prefactor, often used in MTT collision approximations [96,118].
The effects of coherent scattering in the liquid phase approximation are clearly

evident in Figure 2.2 (b), where νm
n0

is multiple orders of magnitude smaller at low
energies. As the mean energy of an incoming electron increases, the effects of coherent
scattering are reduced and the liquid phase result converges to the gas phase value.

Previously the momentum transfer collision frequency has been used as the collision
rate for the energy flux balance equation, owing to the physical similar collisional time
scales for the two vector quantities [95, 104,146]. However, it can be seen in Figure 2.2
that there is a difference between the momentum transfer frequency and a specifically
computed energy flux transfer frequency, even in this simple benchmark problem, across
both gas and liquid phase media. This supports the claim of using a dedicated energy
flux transfer rate as also recommended by Becker and Loffhagen [103,144].

Closure Terms

The higher-order moment closure terms θss
m and θss

ξ , defined by equations (2.23) and
(2.24) used in the 4MM-SS/DDA-SS models, are plotted against the parameterized
moment closure terms, defined by equations (2.27) and (2.29) used in the 4MM-D
model, in Figure 2.3.
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Figure 2.3: Higher order closure input for gas and liquid media according to collision
model in Table 2.1: (a) Momentum balance term, θss

m; (b) energy flux balance term,
θss
ξ .

The inset plots demonstrate there is departure between the approximations once the
inelastic channel begins to contribute significantly, specifically on intermediate energy
ranges (0.1 eV - 10 eV) commonly experienced in non-equilibrium low-temperature
plasma modeling. One should note a difference between gas and liquid phase values as
well, which the parameterized closure does not allow for. This is the primary motivation
to preference a direct substitution of steady state data as a function of the electron
mean energy, as opposed to parameterizing or assuming a simpler form of the higher
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order terms.

2.3.4 Hat Field Benchmarks

In order to verify against similar benchmarks used in previous works, a simple hat
perturbation of a homogeneous background reduced electric field has been adopted
[103,149]. The hat perturbation is placed downstream of an electron source emitting
with a constant flux. Fluid models are solved in the steady state over the domain in
order to resolve the response of macroscopic variables to the field change. The hat
perturbation used previously increases the magnitude of the background reduced electric
field with a step function over a defined distance. The geometry of this benchmark is
outlined in Figure 2.4.

 s

LHAT

z=- z=0

HIGH

E
n0

SS

E
n0

LOW

E
n0

Figure 2.4: Hat and inverse hat field benchmark problem geometry

Studying the hat field benchmark allows the effect of inelastic collisions to be studied,
and for the performance of fluid models to be evaluated in this field-enhanced collision
regime. By increasing the reduced electric field the electron distribution function
within the hat samples a larger portion of the inelastic cross section. If the increased
reduced electric field is within a certain range a balance between field driven heating
and inelastic cooling is reached. This window phenomenon in effect produces oscillating
spatial structures in all macroscopic observables [98, 153]. By studying the response of
fluid models to this field, one may assess the ability, or inability, of these models to
account for such spatial structures.

In addition to the hat field benchmark that increases the magnitude of the reduced
electric field, one may also simulate an inverse hat field benchmark that reduces the
magnitude of the reduced electric field. This inverse hat field model has been chosen in
order to examine the relaxation of momentum and energy in low advection problems.
Given that closure assumptions of the fluid equations directly impact the divergence
of the higher order tensors, and hence the diffusive transport of electron number and
energy, it is vital to study a low-field benchmark that emphasizes the impacts of diffusive
transport.

Benchmarking against the discussed hat and inverse hat problems provides a suitable
breadth of physical conditions to evaluate fluid models presented in this work. For
example, the increasing hat field can be compared to potentially sharp gradients found
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in field-enhanced tip regions of streamer propagation [95, 104,146] or in sheath regions
near boundaries [96,100]. While conversely, the reduced magnitude of the inverse hat
field can be compared to regimes where electric field screening occurs in the channel
behind a propagating streamer [95,104,146] or where an electric field sheath transitions
back into the bulk region of a plasma [96,100].

Initial and Boundary Conditions

A source emitting electrons at a constant rate at the background reduced field’s steady
state mean energy and drift velocity was placed far from the reduced electric field
perturbation, such that the electrons had relaxed to a steady-state for the background
field before reaching the field step.

Initially the domain was empty, n(z, 0) = 0, prior to the source being turned on.
Each system of fluid equations was evolved in time, using the numerical method outlined
in A, until a steady state solution was reached.

Simple boundary conditions for electron density, and thus fluxes and energy density,
are used through fixed Dirichlet conditions

n

(
−L
2
, t

)
= n

(
L

2
, t

)
= 0 (2.37)

where L is the length of the simulation domain. To further reduce the effect of boundaries
the computational domain was extended to avoid significant density transport within a
fixed distance of the boundaries.

Goodness of Fit

In order to quantify how well each fluid model can produce physically accurate results
this work uses a goodness of fit table for each benchmark. Normalized mean square error
(NMSE) computations are performed for each fluid model solution when compared to
the physically detailed Monte Carlo solution. The NMSE of an approximation, fapprox,
compared to an exact value of the function, fexact, is defined as

NMSE =

∥∥∥∥ fexact − fapprox
fexact − mean (fexact)

∥∥∥∥2 , (2.38)

where ‖...‖ indicates the 2-norm. In the interpretation of NMSE results, noting the
bounds 0 ≤ NMSE ≤ ∞, where NMSE = 0 indicates a perfect fit, NMSE = ∞ indicates
a bad fit, and NMSE = 1 implies the approximation is no better a fit than a straight
line.

Standard Hat Field

Figures 2.5 and 2.6 present steady state solutions of each fluid model for the standard
hat field benchmark in both gas and liquid phase. Tables 2.2 and 2.3 include the NMSE
goodness of fit values. For comparison a Monte Carlo (MC) solution of the benchmark
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problem is included, computed from methods previously used by the JCU group [65,87].
For the steady state closure method advocated in this work the presented results are
the same for both 4MM-SS and DDA-SS models, since the solution is in the steady
state.

The fluid model results presented in Figures 2.5 and 2.6 and NMSE values in Tables
2.2 and 2.3 demonstrate strong agreement among fluid models for this benchmark
in both gas and liquid phases. None of the fluid models can reproduce the periodic
structures found in the MC solution, consistent with previous studies [103]. The Fourier
and zero heat flux closures offer similar solutions which tend to overshoot on rising and
falling edges of the field perturbation. On the other hand, the 4MM-D and DDA-SS
solutions are generally monotonic, with the exception of an irregular peak on the falling
edge of the hat.

MC simulations demonstrating mean energy heating and cooling either side of the
rising and falling edges of the hat are not reproduced to the same magnitude by fluid
models. This demonstrates the non-local effects of the electric field change impacting
transport properties some distance away. The fluid models appear to be capable of
resolving some of this non-local transport but not to the extent found in the MC
simulations, particularly in the liquid phase benchmark.

Overall there are minor observable differences among the fluid model results and
all NMSE results are very consistent across all variables, approaching zero, indicating
a reasonable approximation in the “line of best fit” sense for all variables with all
fluid models used. It can be concluded that using any of the fluid models provides a
reasonable approximation to the steady-state electron transport, excluding the periodic
electron structures, in cases such as this benchmark
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Figure 2.5: Gas phase hat field perturbation benchmark as per Figure 2.4 where
L̃HAT = 30, E

n0
= −1Td : −10Td : −1Td

Table 2.2: NMSE for Figure 2.5 solutions for each fluid model compared against Monte
Carlo result

Model nSS WSS 〈ε〉SS
DDA-SS 0.004 0.033 0.112
DDA-F 0.010 0.035 0.111
DDA-Z 0.007 0.037 0.111
4MM-D 0.005 0.032 0.112
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Figure 2.6: Liquid phase hat field perturbation benchmark as per Figure 2.4 where
L̃HAT = 50, E

n0
= −1Td : −5Td : −1Td

Table 2.3: NMSE for Figure 2.6 solutions for each fluid model compared against Monte
Carlo result

Model nSS WSS 〈ε〉SS
DDA-SS 0.024 0.016 0.015
DDA-F 0.013 0.011 0.015
DDA-Z 0.015 0.012 0.018
4MM-D 0.022 0.016 0.014

Inverse Hat Field

Comparison of the fluid model results in Figures 2.7 and 2.8 and the NMSE goodness
of fit metrics in Table 2.4 indicate a significant difference between fluid models in
this study. It can be seen the Fourier and zero heat flux models significantly differ to
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the MC solution, whereas the 4MM-D and DDA-SS models provide a qualitatively
closer approximation to the actual solution for number density and mean velocity. The
number density profiles for the DDA-F and DDA-Z models offer a completely different
qualitative result compared to the MC result because of the overshoot of the mean
velocity profiles; in order for the particle flux to remain constant in the steady state,
the number density must compensate for the overshoot in the mean velocity, leading to
the erroneous results in Figures 2.7 and 2.8.

The discrepancy between MC results and fluid models isn’t as pronounced for the
liquid phase transport, compared to the gas phase. An effect of the inclusion of coherent
scattering for the liquid phase results in a longer momentum relaxation distance in
liquid phase transport, which appears to assist the fluid models in reproducing some of
the results.

In contrast, the 4MM-D and DDA-SS models provide a better approximation of the
mean velocity leading to a closer approximation of the number density, and implying
these models handle the low advection transport regime much better than the other
two models.

The agreement in the mean energy profiles is much tighter than the lower two
moments, with all fluid models doing reasonably well in approximating the MC solution.
One should note that while 4MM-D and DDA-SS models have very similar NMSE
values, Figure 2.7 shows the 4MM-D model produces incorrect relaxation behavior on
the falling edge of the inverse hat. The Fourier model solution offers a very good fit
within the hat region, but the inaccuracy of the number density and mean velocity
results detracts from this positive result for the DDA-F model.

Noticeably, in Figure 2.8, none of the fluid models provide a good approximation to
the liquid phase mean energy relaxation inside the inverse hat perturbation. It appears
the longer liquid phase relaxation length is better approximated by the DDA-SS and
4MM-D models when compared to the MC mean energy, but the attenuation of the
energy is not well described. The opposite appears to be the case for DDA-F and
DDA-Z results, which attenuate the mean energy to a lower value but the relaxation
length is considerably different than the MC result.
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Figure 2.7: Gas phase inverse hat field perturbation benchmark as per Figure 2.4 where
L̃HAT = 30, E

n0
= −1Td : −0.1Td : −1Td

Table 2.4: NMSE for Figure 2.7 solutions for each fluid model compared against Monte
Carlo result

Model nSS WSS 〈ε〉SS
DDA-SS 0.018 0.011 0.017
DDA-F 0.491 0.170 0.008
DDA-Z 0.267 0.293 0.011
4MM-D 0.030 0.014 0.027
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Figure 2.8: Liquid phase inverse hat field perturbation benchmark as per Figure 2.4
where L̃HAT = 50, E

n0
= −1Td : −0.2Td : −1Td

Table 2.5: NMSE for Figure 2.8 solutions for each fluid model compared against Monte
Carlo result

Model nSS WSS 〈ε〉SS
DDA-SS 0.037 0.076 0.417
DDA-F 0.228 0.113 0.365
DDA-Z 0.136 0.121 0.361
4MM-D 0.032 0.076 0.421

2.3.5 Spatiotemporal Pulse Evolution

As a supplement to the steady state hat field benchmark, which provides some non-
equilibrium effects near the field perturbations, the transient evolution of a Pulsed
Townsend experiment initial pulse was studied to study the ability of the presented
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fluid models to resolve time-dependent transport effects. Study of this benchmark
allows the performance of the fluid models in a sharp gradient, non-hydrodynamic, and
non-equilibrium regime to be assessed. For brevity this benchmark is presented for gas
phase transport only, as liquid phase results were very similar.

This simulation takes place by releasing the narrow pulse in a homogeneous back-
ground reduced field, and simulating the space-time evolution. Sample times were
taken at approximately 10 and 100 momentum transfer relaxation times, and 5 energy
transfer relaxation times. These sample times were chosen to demonstrate the solution
variations over different physical regimes in order to assess which fluid models provide
the best overall response.

For this benchmark comparison a multi-term solution of the Boltzmann equation
detailed by Boyle et al. [10] has been included as a reference solution. For this
benchmark the reduced electric field was fixed at E

n0
= −3 Td such that Wz =

1.385× 104 m s−1, 〈ε〉 = 0.8337 eV are the steady state drift velocity and mean energy
respectively.

Initial and Boundary Conditions

The transient pulse benchmark was set by an initial condition of a narrow Gaussian
number density

fn (z̃) =
1

∆z̃0
√
2π

exp

[
−1

2

(
z̃

∆z̃0

)2
]
, (2.39)

where ∆z̃0 = 0.1, and fixed in velocity space by a drifted Maxwellian distribution

fv (v) = fn (z)

(
m

2πkBT

) 3
2

exp
[
− m

2kBT
(v − W)2

]
, (2.40)

where T = 104 K and W = 105 ms−1Ê.
Initial conditions for fluid model computational variables are determined by integ-

rating (2.15) - (2.17) over the distribution function

f (U, r, 0) = Afn (z̃) fv (v) , (2.41)

where A is a normalization constant such that
∫
U

1
2 f (U, r, 0) dU = 1. Evaluation of

these gives

n (r, 0) = fn (z̃) (2.42)

Γ (r, 0) = fn (z̃)W,

nε (r, 0) = fn (z̃)

(
3

2
kBT +

1

2
meW

2

)
,

Γε (r, 0) = fn (z̃)

(
5

2
kBT +

1

2
meW

2

)
W.
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Dirichlet boundary conditions described for the steady state hat benchmark were
employed for the transient pulse evolution.

Number Density Evolution

The number density evolution displayed in Figure 2.9 demonstrates that at short times
dominated by momentum relaxation no fluid model provides an exact replication of the
kinetic result, consistent with expected accuracy bounds of fluid models [95,96,103].
Despite all fluid model results being more diffusive than the kinetic solution, none
demonstrate concerning variation from the general qualitative behavior of the accurate
kinetic solution.
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Figure 2.9: Transient evolution of electron density from narrow Gaussian pulse. Gas
phase media as per Table 2.1 with background E

n0
= −3Td.

Considering the intermediate regime between momentum and energy relaxation
processes in Figure 2.9 shows better agreement to the kinetic solution for all fluid
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models apart from the 4MM-D model. This demonstrates the effects of higher density
diffusivity due to closure assumptions in the 4MM-D model.

As time continues, and energy relaxation becomes the dominant process, the
variation between fluid solutions is shown in Figure 2.9. It can be plainly seen the zero
heat flux and Fourier closure assumptions produce profiles that poorly fit the kinetic
result. They are both forward peaked, and inaccurately predict the back-diffusion seen
behind the bulk of the pulse. The 4MM-D closure performs slightly better, except in
the region behind the bulk of the pulse, where it appears back-diffusion has not been
modeled accurately. Finally, the 4MM-SS result remains a suitable “line of best fit”
approximation to the kinetic solution.

Mean Velocity Evolution

From the evolution of mean velocity shown in Figure 2.10 it can be seen that the
4MM-SS continues to provide a closer approximation to the kinetic solution across
all three time scales. At early times, the non-hydrodynamic transport of the kinetic
solution is not replicated by any fluid model yet the steady state closure provides the
closest comparison compared to the other discussed fluid models.

During the transition between momentum and energy relaxation times there’s better
comparison for most of the fluid models, with the exception of the zero heat flux model.
However at the longest time scale the discrepancies between each fluid model can be
seen. In the regions close to, and behind, the origin the mean velocity is best predicted
by the 4MM-SS model. While the remaining fluid models provide an over estimation
of the mean velocity, particularly in back diffusion regions behind the origin. As the
pulse relaxes into a smooth-gradient hydrodynamic regime, the agreement becomes
asymptotically better across all fluid models, as one might expect.

Mean Energy Evolution

Mean energy variation is much simpler to identify in this benchmark compared to
the previous macroscopic observables. At short times Figure 2.11 shows a qualitative
agreement to the quadratic-like shape of the kinetic solution - apart from the 4MM-D
model. The zero heat flux model underestimates the mean energy consistently, while
the Fourier closure appears to perform quite well. The 4MM-SS model overestimates
the mean energy in the bulk of the pulse, and underestimates on the fringes. Overall,
the approximations of most fluid models perform qualitatively well in this time sample.

As time advances into the two final sample times in Figure 2.11, it can be seen
most fluid models fail to approximate the kinetic solution well apart from the 4MM-SS
model. The DDA-Z and DDA-F models show that on the fringes of the pulse the mean
energy is severely overestimated, while generally underestimating in the bulk of the
pulse. The 4MM-D model continues to suffer inaccuracies in regions experiencing back
diffusion effects, but does regain some accuracy in the long time regime when predicting
the energy relaxation into the hydrodynamic regime.
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Figure 2.10: Transient evolution of electron mean velocity from narrow Gaussian pulse.
Gas phase media as per Table 2.1 with background E

n0
= −3Td.

The 4MM-SS demonstrates the ability to generally resolve a “line of best fit”
approximation to the kinetic solution across multiple time scales. As a supplementary
benchmark to the steady state hat field benchmark results, the presented transient
evolution results are a good indicator of the general accuracy that the 4MM-SS steady
state distribution closure provides. The strength of this model lies in reverting to a
steady state limit to provide a physical distribution when predicting transport, this is
especially clear in regions where back diffusion of energy and density are found.

2.3.6 Distribution effects and implications for fluid modeling

In order to understand the results and limitations of the presented fluid models the
energy distribution function was studied. Given that the majority of modern fluid
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Figure 2.11: Transient evolution of electron mean energy from narrow Gaussian pulse.
Gas phase media as per Table 2.1 with background E

n0
= −3Td.

models utilize the local mean energy approximation in evaluation of collisions, and
possibly closure, it is important to understand the role of the distribution function
in producing results such as spatially periodic structures that fluid models currently
cannot reliably produce.

In order to study the energy distribution function effects a transient kinetic solution
of the Boltzmann equation, discussed in the previous section, was sampled after
approximately five energy relaxation time periods, 5τe. At this time the initial energy
distribution will have sufficiently relaxed to reduce sharp non-hydrodynamic effects.
At the sample time the mean electron energy can be plotted, as shown in Figure 2.12,
and samples in position-space can be taken where the mean-energy coincides with the
steady-state mean energy value of 0.8337 eV.

The typical form of the distribution function component U
1
2 f0 (U) at the spatial
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Figure 2.12: Transient mean energy evolution at tsample ≈ 5τe indicating sample points
coinciding with 〈ε〉ss = 0.8337 eV

points corresponding to the same steady-state mean energy value are shown in Figure
2.13. For comparison the steady-state energy distribution function component, found
by simulating the kinetic solution for a very long time, and that of a drifted Maxwellian
energy distribution function, coinciding with the steady-state drift and energy, are also
plotted.

From the representative distribution functions it can be seen the qualitative form
of the energy distribution function varies significantly between heating and cooling
regimes in the transient evolution. It was found that distribution functions on the
leading edge of a so called Franck-Hertz oscillation correspond to a forward peaked
distribution function, but do not significantly impinge past the inelastic threshold until
they reach the peak of the oscillation. Conversely, samples on the falling edge of the
oscillation contain a bi-modal distribution due to inelastic collisions shifting high energy
electrons that were gradually heated on the leading edge regime down to a lower energy
in the distribution.

Compared to the steady-state and drifted Maxwellian distribution function both
heating and cooling distributions are quite different. As a result, this distribution
variation is a key cause of the deficiencies in the local mean energy approximation used in
plasma fluid modeling. Until the local mean energy approximation is improved, in order
to capture distribution variation, the complex spatial structures such as Franck-Hertz
oscillations, will not be resolvable with a fluid method.
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Figure 2.13: Comparison of typical energy distribution functions, U
1
2 f0 (U), for transient

heating and cooling regimes. Steady state distribution and drifted Maxwellian shown
for comparison.

2.4 Chapter Summary

This Chapter has presented the framework for a unified approach to electron fluid
modeling in gas or liquid media. Through coherent scattering modifications, the fluid
model accommodates some liquid structure effects which have a considerable effect on
electron transport. Furthermore, the model has the flexibility of incorporating future
additional liquid processes, such as solvation, via including additional electron collision
cross sections into the computation of steady state collision rates.

Within the presented fluid model framework, this Chapter has implemented a fluid
equation closure method that is believed to consistently produce physically sound
approximations across a wide range of regimes in both gas and simple liquid media.
Comparison to fluid models commonly used in the low-temperature plasma modeling
community was performed, and demonstrated improvements were observed in low field
regimes. This was demonstrated by a series of high electric field and low electric field
hat benchmarks, solved for analogous gas and liquid phase electron transport with a
simplified step-inelastic collision model. Despite the simplicity of the collision model,
and the benchmarks, the results presented emphasize the importance of closure in
fluid modeling, and the ability of the steady state closure method to obtain good
approximations across different physical regimes.

To supplement the steady state hat field benchmarks, the impacts of closure on the
transport of a transient non-hydrodynamic, non-equilibrium pulse in a homogeneous
reduced electric field were also presented. It was shown that over multiple time scales,
the approximation of an accurate multi-term Boltzmann equation solution was best
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estimated by the steady state closure assumption.
Finally, this Chapter addressed an energy distribution effect that contributes

significantly to the inability of fluid models to reproduce spatial periodic structures,
such as Franck-Hertz oscillations. It was shown that although generally sound, in a
spatially averaged sense, the local mean energy approximation of collision, and closure,
terms will not be able to reproduce strongly varying distribution function effects in its
current form. Field driven heating and inelastic collision driven cooling regimes were
shown to produce widely different distribution functions in a periodic structure regime,
which the local mean energy approximation simply cannot produce in its current form.

This Chapter has laid the foundation for applying the presented electron fluid model
to the study of electron transport in simulated plasma-liquid interfaces in future work.
It is hoped to motivate future additions of other liquid effects into fluid modeling, such
as polar liquid effects and electron solvation processes. Additionally, this work hopes
to stimulate further studies on improving collision approximation methods in order
to capture distribution effects, and novel methods of closing higher order moments in
charged particle fluid modeling.

In order to apply the proposed higher order fluid model in this Chapter to simulating
gas-liquid systems, it is necessary to closely inspect the dependence of electron transport
on neutral density. With a fluid model defined for gaseous or liquid systems, the following
Chapter will now seek to extend the capability of the proposed model to accommodate
spatially varying values of n0 via density-dependent input data.
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Density dependence of electron

transport data

This chapter contains material that has been published in the following journal article:
[3] NA Garland, GJ Boyle, DG Cocks and RD White. Approximating the nonlin-

ear density dependence of electron transport coefficients and scattering rates across
the gas–liquid interface. Plasma Sources Science and Technology, 27 024002 (2018).
Available online at doi:10.1088/1361-6595/aaaa0c

This chapter includes results of multi-term solutions of the Boltzmann equation
provided by GJ Boyle which were used to provide input data for the original work. All
other work described in this chapter is that of the author.

3.1 Chapter Introduction

This Chapter seeks to abstract the transport properties of intermediate fluid densities
across a gas-liquid interface as a function of n0, in order to facilitate modeling between
the two distinct phases. This work will yield a method for approximating electron
transport properties across the gas and liquid interface to include the effects of non-
linear density dependent scattering processes from dilute gas to a dense liquid. A
successful method will be capable of providing moment model input data, described
in Chapter 2, for electron transport at intermediate densities between two neutral
particle density extremes, allowing a more accurate model of electron transport across
a gas-liquid interface as a continuum over a neutral density transition.

This Chapter briefly revisits the formulation of moment models for electron transport
in gases and liquids in Section 3.2, elaborating on the modifications needed for electron
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transport in liquids. Section 3.2 also discusses the properties of a non-polar simple
atomic liquid interface, and explicitly highlights the input data requirements for
modeling electron transport across an interface with a spatially varying neutral density.
Section 3.3 presents the derivation and benchmarking of approximate methods for a
solution to the input data requirements, where benchmarking is performed for a simple
model liquid. Application of the final proposed method is performed in Section 3.4
using only electron drift velocities in the dilute gas and liquid phases. Assessment of
the accuracy of the method is made for argon and xenon cases through comparison
with experimental and theoretical data.

3.2 Theory

3.2.1 Moment modeling for electron transport in gases and liquids

Moment modeling is a common technique used to simulate a swarm or plasma, in gas
or liquid media, via balance equations of velocity-averaged variables, such as density,
momentum, and energy [2, 76, 89, 95, 104]. This gives a relatively straightforward
macroscopic model of a discharge, when compared to the complex mathematical
and computational requirements of particle based methods such as Partice-in-Cell
(PIC), Monte Carlo (MC), or kinetic solutions of the Boltzmann kinetic equation
[90,93,95,96,100,105]. The simplest variable in moment modeling is the number density
of a species, defined as

n(r, t) =

∫
f(r,v, t) dv, (3.1)

where f (r,v, t) is the electron velocity distribution function (EVDF).
Generic velocity moments can be then defined as

〈Φ〉(r, t) =
1

n(r, t)

∫
f(r,v, t)Φ(v) dv, (3.2)

where Φ(v) is any velocity dependent function, and 〈. . .〉 denotes the expectation value,
a velocity average over f(r,v, t).

Multiplying the Boltzmann equation by an arbitrary velocity dependent trial
function Φ(v) and integrating over velocity space [95, 96] gives the generic moment
equation

∂

∂t
(n〈Φ〉) +∇ ·(n〈vΦ〉)− na ·〈∇vΦ〉 = CΦ, (3.3)

where a is the acceleration experienced by electrons due to applied electromagnetic
fields, and CΦ is the rate-of-change of n 〈Φ〉 due to collisions.

Up to this point, the moment modeling methods described have been independent of
the background media of the swarm or discharge. However, the collisional rate-of-change
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introduced in (3.3) is dependent on the medium and requires careful consideration of
the coherent and incoherent scattering mechanisms within it [10,48]

CΦ = CΦcoherent + CΦincoherent. (3.4)

In previous studies, the derivation [10, 48] and implementation [2] of structure
dependent scattering into moment models has been presented through inclusions of
elastic coherent scattering and electron interaction potential screening [15]. These
effects are significant when the electron de Broglie wavelength is comparable to the
average background particle spacing, λ ∼ n

− 1
3

0 , and modifications to the electron
collision frequencies used in moment modeling are derived.

It was shown that energy transfer collision rates, used in moment modeling, are
not explicitly modified when coherent elastic scattering effects are included [48]. This
allows the same form of equation to be used in dilute gas and soft condensed dense
fluid background media [10,48]. Energy transfer due to inelastic collisions is considered
localized to the immediate target atom and is therefore unaffected by increased back-
ground densities, hence only the elastic scattering events require consideration in the
formulation of a structure dependent kinetic theory. It is noted that other modifications
to inelastic collisions can occur, such as collective excitations, however these remain
incoherent and are not considered in this formulation.

In contrast to energy transfer, density dependent elastic coherent scattering produces
explicit modifications to momentum transfer frequencies when the background medium
is sufficiently dense, such as in a liquid [2,10,48]. The scattering effects due to increased
densities of the background medium can be written as modifications of the dilute gas
phase momentum transfer cross section

σm(v) = 2π

∫ π

0
σ(v, χ)[1− cosχ] sinχdχ, (3.5)

where v is the incoming electron speed, χ is the scattering angle from the target
background medium, and σ(v, χ) is the gas phase differential cross section.

These structure modifications are implemented through a density dependent mo-
mentum transfer cross section

Σm(v, n0) = 2π

∫ π

0
Σ(v, χ, n0)[1− cosχ] sinχdχ, (3.6)

with Σ(v, χ, n0) being an effective differential cross section including coherent scattering
via

Σ(v, χ, n0) = σ̃(v, χ)S(∆k, n0) , (3.7)

where σ̃(v, χ) is the liquid phase differential cross section containing any screening and
polarisation effects, S(∆k, n0) is the static structure factor and ∆k =

2mev

~
sin χ

2
is

the wavenumber proportional to the change in momentum.
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The static structure factor is a non-linear function of n0 of the target material, and
may be calculated from molecular simulations, measured via experiments [15,48,65], or
derived analytically through solutions of pair-correlation functions as per the Verlet-
Weiss structure factor [83]. For detailed discussion on the static structure factor, and its
implementation in liquid scattering, readers are directed to previous studies [15, 48, 65].

Applying this framework for modifying the momentum transfer cross section, the
momentum transfer frequencies for dilute gas and liquid scattering, used as input to
moment models, are

νm(v) = n0vσm(v) , (3.8)

ν̃m(v, n0) = n0vΣm(v, n0) , (3.9)

where νm(v) is the dilute gas momentum transfer frequency, and ν̃m(v, n0) is the
structure modified momentum collision frequency. It should be noted that ν̃m → νm

in the limit of the electron de Broglie wavelength being much smaller than average
background particle spacing, λ� n

− 1
3

0 .
Previously, moment models have been used to simulate electron transport in homogen-
eous media [2, 89, 94, 104] in both gas and liquid phases. Recalling the higher order
moment model used in this study, where space dependence of n0 is explicitly included
in the collision terms. Implementing the structure dependent scattering modifications,
and the general moment integral (3.3), one can write a four moment model for electron
transport, at any neutral density, where an electric field E is applied in the medium [2]

∂n

∂t
+∇ · Γ = n(ν̃ss

I (ε̄, n0)− ν̃ss
a (ε̄, n0)) , (3.10)

∂Γ

∂t
+∇ ·(nθss

m(ε̄))− n
qe
me

E = −Γν̃ss
m(ε̄, n0) , (3.11)

∂nε
∂t

+∇ · Γε − qeE · Γ = −nS̃ss
ε (ε̄, n0) , (3.12)

∂Γε
∂t

+∇ ·
(
nθss

ξ (ε̄)
)
− nθss

m(ε̄) · qeE − nε
qe
me

E = −Γεν̃
ss
ξ (ε̄, n0) , (3.13)

where shorthand variables for particle flux Γ, energy density nε, and energy density
flux Γε are defined as

Γ = n〈v〉 =

∫
f(r,v, t)vdv, (3.14)

nε = nε̄ =

∫
f(r,v, t) 1

2
mv2dv, (3.15)

Γε = n〈ξ〉 =

∫
f(r,v, t) 1

2
mv2vdv, (3.16)

with 〈v〉, ε̄ = 〈ε〉, and 〈ξ〉 being the electron average velocity, average energy, and average
energy flux. Input data is required via collision rates for ionisation, ν̃ss

I , attachment,
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ν̃ss
a , momentum transfer, ν̃ss

m, energy transfer, S̃ss
ε , energy flux transfer, ν̃ss

ξ , and higher
order tensor product closure approximations, θSS

m = 〈vv〉fss and θSS
ξ =

〈
1
2mv

2vv
〉
fss

.
The superscripts SS denote that all input data is computed via velocity averaging over
the steady state EVDF found via MC [65, 87] or multi-term kinetic solution of the
Boltzmann equation [10, 48, 94, 132], for a given density, and interpolated as a function
of the local electron mean energy, ε̄. For further details on the moment model used in
this study the reader is referred to the recent work of Garland et al. [2], in addition to
other recent studies and reviews on the topic [89,95,104].

With a moment model for electron transport across a gas-liquid interface detailed
above, it can be seen that collisional input rates to the model equations (3.10) - (3.13),
such as ν̃ss

m(ε̄, n0) and Sss
ε (ε̄, n0), are now functions of mean electron energy, ε̄, and

the neutral atom density, n0, which varies in space across the gas-liquid interface.
In order to model electron transport across the interface, all steady state averaged
collision rates must be known as a function of energy and each value of n0 across the
interface. This data requirement is problematic because to measure this experimentally
would be a consuming task, and to compute steady state distribution functions for
all densities with coherent scattering and potential screening modifications would
be computationally demanding [10, 15, 65, 87]. For a solution to this problem, an
approximation to intermediate steady state electron transport properties and collision
frequencies is needed, using computed dilute gas and liquid extreme transport properties
only.

3.2.2 Interfacial density properties

In order to approximate the transport properties between vapor and liquid extremes,
the composition of the interface must be known. For this study, it is assumed that an
equilibrium interfacial density profile exists between dilute gas and liquid phases of
some atomic fluid. For this study, non-polar systems (argon, xenon) have been chosen
to begin formulating and benchmarking electron transport models between gas and
liquid phases. This is in part due to the existence of good experimental data as well
as the recent advances in liquid scattering and transport theory [8, 10,15] which have
allowed accurate computation of electron properties in non-polar atomic liquids.

Studies on the existence of an interface between a vapor and liquid surface in
equilibrium were modeled in the late 1970s using molecular dynamics (MD) simulations
once sufficient computing power became available [155]. Since then, many MD and
Monte Carlo (MC) studies have been performed with noble liquids, often modeled using
Lennard-Jones (LJ) potentials [7–9,156]. Key measurables from these studies included
equilibrium liquid and vapor densities, surface tension, and interface layer thickness.
Kalos et al. [155] performed MD simulations of argon gas-liquid interface formation,
resulting in a well defined interface thickness of approximately 5σLJ, where σLJ is the
atomic diameter used in the LJ potential. Later MD and MC studies of various noble
liquids [7–9], such as krypton and xenon, confirmed the earlier simulation results of
Kalos et al. [155].
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The density profile between liquid and vapor was approximated as a hyperbolic
tangent [7–9,156] as shown in Figure 3.1, where key points on the interface are denoted
I1 to I3. In the benchmarking and results to follow, the electron transport properties
at these density points between gas and liquid will be approximated.
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Figure 3.1: Argon vapor-liquid equilibrium interface as determined by molecular
dynamics simulations [7–9]. Labels G and L denote dilute gas and liquid extremities
respectively. Labels I1, I2, I3 denote densities at one-quarter, half-way, and three-
quarters along the density transition which will be used for benchmarking in Section
3.3.

The ratio between vapor and liquid densities in equilibrium (ng/nl) was found to
be variable depending on the atomic potentials chosen in the MD simulations [8, 9].
Trokhymchuk and Alejandre [8] studied different cut-off distances for LJ potentials
to demonstrate liquid-vapor density ratios of 1/200 to 1/500, depending on the cut-
off distance from 2.5σLJ to 5.5σLJ. In the future, to ensure a sensible liquid-vapor
density ratio is employed in transport simulations across the liquid-vapor interface, the
highlighted variation in neutral density ratios due to choice of the interaction potential
will need to be considered. This cut-off distance is often employed in practice to make
computational implementation of the exact LJ potential simpler by assuming a model
potential that is fixed to be zero beyond the specified cut-off distance [8].

3.2.3 Simple model for benchmarking collisions in liquids

Before investigating electron transport in real atomic gases and liquids, it is beneficial
to benchmark the performance of a proposed model against simple, well known collision
models. For this study the Percus-Yevick liquid model with structure factor correction
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of Verlet and Weiss [57, 65, 83] is employed to modify a simple gas phase collision
model to induce structure and provide a well defined simple liquid model, used often
in previous studies [10, 15, 48]. The collision (or interaction) model is defined as a
hard-sphere elastic momentum transfer cross section σm = 6Å2 with inelastic step
function cross section σinel (ε) = 0.1Å2

, and a threshold energy ∆εinel = 2 eV. Electron
mass and neutral atom mass are defined as me = 5.486× 10−4 amu and m0 = 4 amu
respectively, with a neutral background temperature of T0 = 300K.

A range of packing fractions φ = 0, 0.1, 0.2, 0.3, 0.4 were used to simulate increas-
ingly dense fluids between a dilute gas, φ = 0, and a final liquid phase, φ = 0.4. For a
given known neutral atom density the packing fraction is defined as

φ =
4

3
r3n0, (3.17)

where r is the hard sphere radius, which can be expressed as r =
√
σm
π

for the hard
sphere collision model or approximated by the van der Waal radius for a real atom.

The analytic static structure factor of Verlet and Weiss [83] was used in this study,
and is defined as

SVW (∆k, n0) =

(
1 +

24η(S1 + S2 + S3)

∆k2

)−1

, (3.18)

where the terms

S1 =
2

∆k2

(
12

γ

∆k2
− β

)
,

S2 =
sin(∆k)

∆k

(
α+ 2β + 4γ − 24

γ

∆k2

)
,

S3 =
2 cos(∆k)

∆k2

(
β + 6γ − 12

γ

∆k2

)
− cos(∆k)(α+ β + γ) ,

are non-linear functions of the neutral number density via the packing fraction (3.17),
and η = φ− φ2

16 , α = (1+2η)2

(1−η)4 , β = −6η
(
(1+0.5η)2

(1−η)4

)
, and γ = ηα

2 .
With well defined properties of an equilibrium vapor-liquid interface and a simple

liquid collision interaction model, the next Section aims to approximate drift velocities,
and thus momentum transfer collision frequencies, for intermediate densities between
gas and liquid extremes as depicted in the interface configuration in Figure 3.1.

3.3 Approximating electron transport at associated

intermediate densities

The following section presents the derivation and associated benchmarking of approx-
imations to input electron collision frequencies at intermediate densities between gas
and liquid extremes. In order to derive necessary approximations this section takes
inspiration from dilute gas swarm physics methods for approximating drift velocities
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in gas mixtures as weighted combinations of each pure constituent gas’s drift velocity.
These mixture rules initially took the form of Blanc’s law [157], which assumed that the
EEDF in the gas mixture at a reduced field (E/N) is the same as the EEDF in the pure
constituent gases at the same E/N. This type of approximation was later described
as a common E/N (CEON) procedure [158]. The CEON concept was extended and
improved [158,159] to the common mean energy (CME) method which assumes that
the EEDF in the gas mixture at a given electron mean energy is the same as the EEDF
in the pure constituent gases at the same mean energy.

The work to follow adapts the CME derivation presented by Jovanovic et al. [158]
and considers steady state momentum and energy balance equations for gas, liquid, and
intermediate densities to yield expressions for electron drift velocities at intermediate
densities. Drift velocity was chosen as the benchmark variable in this study, as
opposed to the collision frequencies needed as moment model input. This was decided
because experimentally measuring drift velocity is straightforward compared to collision
rates, allowing approximations produced in this study to be verified directly. Further
discussion on these dilute gas mixture rules are presented in the Appendix.

3.3.1 Momentum balance method

One may first consider the steady state spatially averaged momentum balance form
of equation (3.11) for electrons in a dense fluid, of neutral density nint, within the
interfacial region between the gas and liquid extremes, with neutral densities ng and nl
respectively. It is assumed that the momentum transfer collision frequency is a slowly
varying function of electron mean energy and first order momentum transfer theory
(MTT) [70,76, 96] can be used to write electron transport as a function of the electron
mean energy. It is assumed there is a one to one relationship between the reduced field
and electron mean energy [158]. This yields

e

me
Ěint(〈ε〉int) = Wint(〈ε〉int)

〈
ν̌int
m

〉
(〈ε〉int) , (3.19)

where Ěint = Eint/nint is the reduced electric field, Wint is the electron drift velocity,
and

〈
ν̌int
m

〉
=
〈
νint
m

〉
/nint is the unknown electron reduced momentum transfer frequency

in the fluid at this intermediate density. For emphasis, one should explicitly write that
the steady state transport properties are functions of the mean electron energy, 〈ε〉int.

As per the CME method of dilute gas mixture rules [158], one can now assume
the intermediate momentum transfer rate,

〈
ν̌int
m

〉
, can be approximated by a weighted

combination of collisions due to gas phase transport and collisions in the liquid extreme
evaluated at a common electron mean energy

〈
ν̌int
m

〉
(〈ε〉int) = xg〈ν̌gm〉(〈ε〉int) + xl

〈
ν̌lm

〉
(〈ε〉int) , (3.20)
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where
〈
ν̌g,lm
〉
=
〈
νg,lm
〉
/nint denotes reduced collision frequencies of electrons in gas and

liquid extremes, and the density fractions, xg,l, follow the relation

xl = 1− xg. (3.21)

These density fractions are determined by defining the intermediate density as a
sum of fractions of either density extreme

nint = xgng + xlnl, (3.22)

such that one can find an expression for the density fraction

xg =
nl − nint
nl − ng

. (3.23)

Now consider the steady state momentum balance equation (3.19) of electrons in the
two gas and liquid extremes taken at the same neutral density, nint, as the interfacial
density being approximated

e

me
Ěg,l

(
〈ε〉g,l

)
= Wg,l

(
〈ε〉g,l

)〈
ν̌g,lm

〉(
〈ε〉g,l

)
, (3.24)

where 〈ε〉g,l is the electron mean energy, Ěg,l is the reduced electric field, and Wg,l is
the electron drift velocity in either gas or liquid extremes.

One can now invoke the CME assumption [158] so that electron transport is described
as a function of a common electron mean energy, ε̄, in any intermediate fluid on the
interfacial region, or in pure gas or liquid extremes. One may now substitute

〈
ν̌g,lm
〉

from equation (3.24) and combine equations (3.20) and (3.19) to find an expression,
similar to the dilute gas mixture rule of Blanc’s law [157], but which accounts for
electric field variation as a function of mean energy

1

Wint(ε̄)
= xg

Ěg(ε̄)

Ěint(ε̄)

1

Wg(ε̄)
+ xl

Ěl(ε̄)

Ěint(ε̄)

1

Wl(ε̄)
, (3.25)

where all steady state drift velocities and reduced fields are interpolated as functions of
the local electron mean energy ε̄.

To determine the accuracy of the proposed approximation from momentum balance
(3.25) benchmark calculations were performed using the simple liquid collision model
defined in Section 3.2.3. Using the momentum balance rule (3.25), steady state drift
velocities were approximated for multiple packing fractions φ = 0.1, 0.2, 0.3 using only
the properties of the extreme φ = 0 and φ = 0.4 fluids, as per the interface layout in
Figure 3.1.

Approximations computed from (3.25) were compared against accurate results
obtained from multi-term solutions of the Boltzmann equation [10,15,48]. All variables
for the gas and liquid extremes were interpolated as functions of electron mean energy,
ε̄, using the steady state mean energy of the intermediate density computed from a
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multi-term kinetic solution [10]. It should be noted that the use of equation (3.25)
necessitates a knowledge of the functional relationship between steady state reduced field
and mean energy, Ěmix (ε̄) , which in practice would not be known when approximating
interfacial transport properties for input to a moment model. For these benchmarking
calculations the steady state relationship Ěmix (ε̄) computed from kinetic solutions
was used at each intermediate φ step; in this way the assumption of decomposing the
intermediate collision frequency as a function of gas and liquid extremes can be solely
tested.

Results of the benchmark calculations for the momentum balance rule (3.25) are
shown in Figure 3.2 where approximate values of drift velocity are given by the dashed
line series and, for comparison, solid lines denote accurate values obtained via multi-
term solution of the Boltzmann equation. The accurate benchmark solutions of the
Boltzmann equation used in this study are computed via the multi-term solution
framework developed by the JCU group. For the formulation and implementation
details of this framework the reader is referred to [10,15,48,132,160].
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Figure 3.2: Comparison of electron drift velocities in model simple liquids for φ =
0.1, 0.2, 0.3. Solid lines: multi-term solution of the Boltzmann equation [10]. Dashed
lines: computed via approximation (3.25) derived from momentum balance.

Across all packing fractions it can be seen that the momentum balance rule severely
overestimates the intermediate drift velocity, consistently predicting values above even
the φ = 0.4 liquid extremity drift velocities. This is attributed to the failure of the
additivity assumption for constructing

〈
νint
m

〉
, invoked in equation (3.20). This occurs

because the background neutral number density n0 can no longer be factored out of
the intermediate fluid’s momentum transfer collision frequency, ν̃m, when coherent
scattering effects are included.
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The introduction of non-linearity in n0 can be seen by considering momentum
transfer collision frequencies (3.8) and (3.9), where the structure modified momentum
cross section is derived via an energy integral over the non-linear static structure factor,
in this case the Verlet-Weiss analytic form, SVW (∆k, n0) as per (3.18). In the dilute
gas case, νm was directly proportional to n0 and so some proportionality to n0 can be
reasonably expected when neutral densities are low. However, once coherent scattering
effects are important, the non-linearity of the static structure factor clearly breaks down
any simple proportionality relation between ν̃m and n0. With the momentum balance
approximation failing to sufficiently describe intermediate density drift velocities, the
assumption invoked in equation (3.20) requires further improvement.

3.3.2 Energy balance method

This section now considers the steady state spatially averaged form of the energy balance
equation (3.12) for an intermediate density between gas and liquid extremes. As per
Section 3.3.1 one may apply first order momentum transfer theory (MTT) [70,76,96]
and also assume there is a one to one relationship between the reduced field and electron
mean energy [158] to write transport coefficients and collision rates as a function of the
electron mean energy, 〈ε〉int, i.e.,

eĚint(〈ε〉int)Wint(〈ε〉int) =(
〈ε〉int −

3

2
kBTint

)〈
ν̌int
e

〉
(〈ε〉int) + ∆εinel

〈
ν̌int

inel
〉
(〈ε〉int) , (3.26)

where the elastic and inelastic collision rates are explicitly separated,
〈
ν̌int
e

〉
=〈

νint
e

〉
/nint is the reduced elastic electron energy transfer collision frequency, Tint is

the temperature of the fluid at an interfacial point, ∆εinel is the inelastic collision
threshold energy, and

〈
ν̌int

inel
〉
=
〈
νint

inel
〉
/nint is the reduced electron inelastic energy

transfer collision frequency due to internal energy state changes from inelastic threshold
collisions 1.

In contrast to Section 3.3.1, now assume additivity of energy transfer collision
frequencies for both gas and liquid extremes, evaluated at the interfacial mean energy,
〈ε〉int, to approximate the collision frequencies at the intermediate density

eĚint(〈ε〉int)Wint(〈ε〉int) = (3.27)(
〈ε〉int −

3

2
kBTint

)[
xg 〈ν̌ge 〉(〈ε〉int) + xl

〈
ν̌le

〉
(〈ε〉int)

]
+

∆εinel

[
xg
〈
ν̌ginel

〉
(〈ε〉int) + xl

〈
ν̌linel

〉
(〈ε〉int)

]
,

where
〈
ν̌g,le
〉
=
〈
νg,le
〉
/nint denotes reduced electron energy transfer collision frequency

with superscripts g, l denoting either the gas or liquid extremes,
〈
ν̌g,linel

〉
is the reduced

1For clarity in the derivation, just one inelastic excitation scattering process is included. It is
straightforward to demonstrate that the following results are unaffected by adding further inelastic
scattering processes.
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inelastic energy transfer collision frequency due to inelastic threshold collisions, and
density fractions xg,l are defined as per equations (3.21) - (3.23).

To obtain expressions for
〈
ν̌g,le
〉

in either extreme, consider the steady state energy
balance equations (3.26) of electrons in the gas and liquid extremes taken at the same
neutral density, nint, as the interfacial density being approximated

eĚg,l

(
〈ε〉g,l

)
Wg,l

(
〈ε〉g,l

)
=(

〈ε〉g,l −
3

2
kBTg,l

)〈
ν̌g,le

〉(
〈ε〉g,l

)
+∆εinel

〈
ν̌g,linel

〉(
〈ε〉g,l

)
. (3.28)

If the temperature is assumed constant across all densities in the gas-liquid interface
system, and once again the CME assumption is invoked to abstract steady state electron
transport at all neutral densities as a function of some common mean energy, ε̄, one
can rearrange (3.28) to obtain expressions for

〈
ν̌g,le
〉

and substitute them into (3.27).

It can be shown that the reduced inelastic scattering rates
〈
ν̌g,linel

〉
cancel out yielding

an expression for the drift velocity at the intermediate density

Wint(ε̄) = xg
Ěg(ε̄)

Ěint(ε̄)
Wg(ε̄) + xl

Ěl(ε̄)

Ěint(ε̄)
Wl(ε̄) . (3.29)

To establish the accuracy of the energy balance approximation (3.29), the same
benchmark calculations for the simple Percus-Yevick atomic liquid were performed.
Results of this approximation are shown in Figure 3.3, where solid lines denote accurate
values obtained via multi-term solution of the Boltzmann equation and approximate
values of drift velocity are given by the dashed line series.

In general, the approximation derived from energy balance (3.29) appears to be a
better representation of the intermediate density than the momentum balance method
(3.25). For higher packing fractions φ = 0.2, 0.3 the approximation of drift velocity by
(3.29) demonstrates an excellent agreement with an accurate kinetic solution across all
energy ranges. The agreement for the φ = 0.1 case is strong at low and high fields but
loses accuracy at intermediate fields of approximately 1 Td - 5 Td, where a maximum
error of approximately 30% is produced. In this field range the assumption that the
energy transfer collision frequency can be approximated by a linear combination of
the collision frequencies in gas and liquid extremes, as invoked in (3.27), appears to
be insufficient. The effects of this inaccuracy are very apparent in the φ = 0.1 case in
Figure 3.3, and present to a lesser degree in the φ = 0.2 case. This is a reflection of
the approximations associated with the first-order momentum transfer theory used in
developing the relation (3.29) [76, 161]. This inaccuracy could be improved through
higher-order momentum transfer theory if desired.

To explain why an approximation derived from energy balance should perform
better than one derived from momentum balance, recall the modifications of electron
transport in gases required to simulate transport in liquid media, outlined in Section
3.2.1. Firstly, inelastic collisions result in largely localized energy transfer between
electrons and the background medium, and it is assumed that these are incoherent
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Figure 3.3: Comparison of electron drift velocities in model simple liquids for φ =
0.1, 0.2, 0.3. Solid lines - multi-term solution of the Boltzmann equation [10]. Dashed
lines - computed via approximation (3.29) derived from energy balance.

scattering events which can be treated by classical dilute gas kinetic theory [10, 15, 48].
On the other hand, in the structure modified kinetic theory [48] used to describe
electron transport in condensed materials, coherent elastic scattering collisions are
important. Since it is elastic scattering that carries the explicit density dependent
coherent scattering effects, it is not surprising that momentum transfer is impacted
more than energy transfer as the neutral density of the background fluids are increased.

In summary, from a rule based on largely structure independent energy transfer
(3.29) a reasonable approximation to Wint is observed, as opposed to an approximation
that ignores the non-linear density effects on momentum transfer (3.25). With this
result, it appears suitable to approximate a lumped energy transfer collision frequency
of an intermediate fluid by simply assuming additivity of the gas and liquid reduced
collision frequencies as per (3.27). The next aim is to now correct the approximation
derived from momentum balance in the previous section, in order to provide a better
approximation to momentum transfer collision rates.

3.3.3 Modified momentum balance method

This section aims to propose a modified momentum balance approximation rule that
aims to explicitly include some of the non-linear effects of density dependent coherent
scattering in the approximation of

〈
νint
m

〉
. By only considering structure induced

coherent scattering effects in this treatment, the approach henceforth neglect density
dependent potential screening effects in the differential cross section (3.7). Future
studies will endeavor to relax this assumption in order to more accurately describe
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density dependent scattering via interaction potential screening and not just coherent
scattering.

To isolate density dependence of the soft condensed phase scattering interaction,
apply first order momentum transfer theory (MTT) [70,76,96] to evaluate the structure
modified momentum transfer cross section as a function of electron mean energy, ε̄,

Σm(ε̄, n0) ≈ σm(ε̄) s(ε̄, n0) , (3.30)

where s(ε̄, n0) is an angle integrated structure factor with explicit n0 dependence

s(ε̄, n0) =
1

2

∫ π

0
S

(
2

~
√
2meε̄ sin χ

2
, n0

)
[1− cosχ] dχ. (3.31)

In the limit of isotropic scattering the approximations of equations (3.30) and (3.31)
are exact [70,76,161]. Decomposing the structure modified momentum transfer cross
section to isolate a density dependence, as per the approximation of equation (3.30),
now allows dense phase collision rates to be approximated via scaling of dilute gas
collision rates.

One may continue the use of MTT and evaluate the structure modified momentum
transfer collision frequency (3.9) as the dilute gas phase momentum transfer collision
frequency multiplied by the angle integrated structure factor each evaluated at the
electron mean energy, ε̄,

〈ν̃m〉(ε̄, n0) ≈ n0

√
2ε̄

me
Σm(ε̄, n0) ,

≈ s(ε̄, n0) 〈νm〉(ε̄) .

Using this result, return to the steady state limit of the momentum balance equation
(3.19), and now make the assertion that instead of simply combining certain fractions of
gas and liquid reduced momentum transfer collision frequencies one must first normalize
each input reduced collision frequency sg,l and then rescale by the intermediate density’s
sint

e

me
Ěint(ε̄) = Wint(ε̄)

[
xg
sint(ε̄)

sg(ε̄)
〈ν̌gm〉(ε̄) + xl

sint(ε̄)

sl(ε̄)

〈
ν̌lm

〉
(ε̄)

]
, (3.32)

where sg,l,int are the angle-integrated structure factors for gas and liquid extremes, and
the intermediate density respectively, all evaluated at a common mean energy ε̄, and
density fractions xg,l are defined as per equations (3.21) - (3.23).

In practice, when approximating transport properties between gas and liquid
extremes over a range of n0 values, sint must be specified at each point along the
interface. Obtaining a function for sint at each point would be very computationally
demanding, and is generally not available experimentally. As a result this method
proposes a further approximation for sint as a combination of the limiting gas and
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liquid angle-integrated structure factors

sint ≈ wsg + (1− w) sl, (3.33)

where to ensure the approximation is physically grounded in both the high and low
energy limits, the weighting factor, w, is fixed in the low energy limit by

w =
Sint(0, nint)− Sl(0, nl)

Sg(0, ng)− Sl(0, nl)
, (3.34)

where S (0) is the ∆k = 0 limit of the static structure factor, which is also proportional
to the fluid’s compressibility.

To benchmark the assumptions used to define equation (3.33) the approximate
and exact angle-integrated structure factors, computed by integrating the analytic
Verlet-Weiss structure factor, are compared in Figure 3.4, where solid lines denote exact
values via integrating (3.31) and approximate values of sint are given by the dashed
line series. Note that for a dilute gas sg = 1 and so this variable is not referenced in
the remainder of this treatment.
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Figure 3.4: Comparison of approximated angle-integrated structure factors for Percus-
Yevick model liquids. Solid lines - exact values via (3.31). Dashed lines - approximated
s via equations (3.33) and (3.34).

As expected, the low and high energy limits are fixed exactly, while intermediate
energies show some differences once the structure factor begins to peak. By substituting
an expression for

〈
ν̌g,lm
〉

from the momentum balance for either gas or liquid extremes
(3.24) into the intermediate fluid momentum balance (3.32), and assuming the common
mean energy assumption, one can yield a modified approximation for drift velocity
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accounting for some non-linear density effects

1

Wint(ε̄)
= xgsint(ε̄)

Ěg(ε̄)

Ěint(ε̄)

1

Wg(ε̄)
+ xl

sint(ε̄)

sl(ε̄)

Ěl(ε̄)

Ěint(ε̄)

1

Wl(ε̄)
. (3.35)

Once again this approximated was benchmarked with results shown in Figure
3.5, where solid lines denote accurate values obtained via multi-term solution of the
Boltzmann equation and approximate values of drift velocity are given by the dashed
line series.
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Figure 3.5: Comparison of electron drift velocities in model simple liquids for φ =
0.1, 0.2, 0.3. Solid lines - multi-term solution of the Boltzmann equation [10]. Dashed
lines - computed via approximation (3.35) derived from structure modified momentum
balance.

It can be seen that this modified momentum balance rule produces a better outcome
than the results of the unmodified momentum balance method, shown in Figure 3.2, for
all benchmark intermediate densities. As observed for the energy balance approxima-
tions in Figure 3.3, the φ = 0.2, 0.3 cases in Figure 3.2 perform consistently well under
the modified momentum balance approximation. In contrast to the approximation
derived from energy balance, the φ = 0.1 case now demonstrates strong agreement
between 1 Td - 10 Td, demonstrating insensitivity to inelastic scattering effects. Inac-
curacies due to equation (3.35) are observed in the φ = 0.1 case between 10 Td - 50 Td
due to the error in approximating sint as a combination of the gas and liquid extrema
structure factors, shown in Figure 3.4.

Despite the noted shortcomings at intermediate fields, the structure-modified drift
velocity approximation (3.35) provides a much better general approximation to Wint

than the original approximation derived from a simpler momentum balance (3.25), and
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demonstrates potential to provide an improved approximation to electron transport at
densities between gas and liquid extrema.

3.3.4 Practical implementation for plasma modeling

So far two approximation rules (3.29) and (3.35) have been derived and were demon-
strated to have potential in approximating electron drift velocities at intermediate
densities between gas and liquid extrema. Each equation is a function of a common
mean energy ε̄, and steady state values of Wg,l and Ěg,l,int are interpolated at these
energies to provide input from either phase extreme. As previously discussed, when
used independently, each equation requires knowledge of the steady state relationship
between Ěint and ε̄ at the intermediate density between gas and liquid. This requirement
is problematic because the gas-liquid interface steady state properties are generally
unknown and hence the motivation for this study.

As a way to form an approximation that can be applied in practice, without any
knowledge of the steady state transport properties at each intermediate density, combine
the two benchmarked approximation rules from energy balance (3.29) and modified
momentum balance (3.35) and solve for Wint, to eliminate Ěint,

W 2
int(ε̄) =

xgĚg(ε̄)Wg(ε̄) + xlĚl(ε̄)Wl(ε̄)

xgsint(ε̄) Ěg(ε̄)
1

Wg(ε̄)
+ xl

sint(ε̄)
sl(ε̄)

Ěl(ε̄)
1

Wl(ε̄)

. (3.36)

To test the performance of the approximation (3.36), the benchmark model used
throughout this study was again applied. The most straightforward measurable that
can be used to verify the accuracy of the approximation is the electron steady state drift
velocity. Despite not being a direct input in higher order moment models [2, 89, 104], it
provides a solid measure on the validity of approximations of input collision frequencies.
For the Percus-Yevick model of a simple atomic liquid, multiple packing fractions,
φ = 0.1, 0.2, 0.3, were used to approximate electron drift velocity and were compared
with accurate calculations of the steady state drift velocity as shown in Figure 3.6.

By only specifying the ∆k = 0 analytic limit of the structure factor SVW (0, nint)

of the intermediate densities the combined approximation (3.36) provides a good
representation of the exact results. As discussed earlier, the higher-density fluids
perform very well, while the lower-density fluid demonstrates variations from the
exact result due to the assumptions on the fluid structure. For packing fractions of
φ = 0.2, 0.3 the maximum error observed was 12%, which occurred near the peak value
of W before the region of negative differential conductivity (NDC) began. For the lower
packing fraction, φ = 0.1, a maximum error of 25% was observed. This approximation
was not as accurate because the simple intermediate structure assumptions used in this
study didn’t accurately represent the transition to near-dilute gas phase. An additional
encouraging feature of the proposed approximation was the ability to predict structure
induced NDC in the model liquids, which has previously been reported to occur at
packing fractions above φ = 0.2 [48], using only the analytic ∆k = 0 limit of the static
structure factor, and dilute gas and liquid extreme transport data.
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Figure 3.6: Comparison of electron drift velocities in model simple liquids for φ =
0.1, 0.2, 0.3. Solid lines - multi-term solution of the Boltzmann equation [10]. Dashed
lines - computed via the practical approximation (3.36).

3.3.5 Approximating collision frequencies across an interface

In practice, when simulating electron transport with higher order moment models
[2, 89, 104] the required inputs are not drift velocities or diffusion coefficients (which
could be computed via an Einstein relation once Wint is known), but rather reduced
collision frequencies. Once an approximate drift velocity is found one may simply
compute a reduced momentum transfer frequency via

ν̌int
m (ε̄) =

eĚint(ε̄)

meWint(ε̄)
, (3.37)

in order to approximate the steady state momentum collision rate at the intermediate
densities between gas and liquid extremes. The results of using the collision frequency
approximation (3.37) are shown in Figure 3.7 for multiple packing fractions.

It can be seen that the approximation to ν̌int
m performs quite well without much

knowledge of the intermediate fluid’s structure and steady state transport proper-
ties. Higher density fluids, φ = 0.2, 0.3, demonstrate the best agreement, while the
inaccuracies in approximating structure for the φ = 0.1 case are highlighted by the
deviation at intermediate energy ranges. This result demonstrates potential for the
final approximation rule (3.36) to be used in conjunction with higher order moment
models [2,89,95,103] to provide a foundation for simulating electron transport between
gas and liquid extremes as a continuum.
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Figure 3.7: Approximated ν̌mix
m for multiple packing fractions of Percus Yevick model

liquid. Solid line: exact via multi-term kinetic solution [10], −−: approximation
via (3.37).

3.4 Application to noble gas-liquid systems

In order to further verify the suitability of the derived approximation (3.36), one should
consider application to real gases and liquids. This Section seeks to use the derived
approximation method, with known steady state transport properties of a dilute gas
and dense liquid, to estimate steady state electron drift velocities measured in a fluid
of intermediate density. In contrast to the previous model where only explicit coherent
effects were considered, real atomic systems require additional modifications to the
interaction potential associated with varying the neutral density [15]. A classic example
of the variation between cross sections at gas and liquid densities is observed in some
rare gases and their liquids, where the low-energy Ramsauer minimum found in gas
phase cross sections is suppressed and eventually completely non-existent as the liquid
density increases [15]. As a result of the complex scattering variations from gas to
liquid states, in conjunction with accessible experimental data, liquid argon and liquid
xenon were chosen for comparison in this study.

Experimental data of Gushchin et al. [11] for drift velocity, electric field, and
mean energy of electrons in liquid argon and liquid xenon were digitized as a basis
for experimental validation of the proposed approximation (3.36). This data set was
chosen over other existing data sets [16, 162] because an approximation to the electron
mean energy, scaled from measurements of the characteristic energy D/µ, was included
in the original study and so provided the necessary mean energy input needed to use
the derived approximations. Table 3.1 outlines the approximate gas to liquid transition
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assumed for each atomic fluid.

Table 3.1: Benchmark atomic gas-liquid systems used for validating proposed drift
velocity approximation rule against experimental data

Liquid - Calc. [10, 15] Intermediate - Exp. [11] Gas - Calc. [10, 15]
Argon 85 K 130 K 300 K
Xenon 165 K 230 K 300 K

As opposed to the Percus-Yevick model atomic liquid, temperature, T , as well
as neutral atom density, n0, varies between the densities used in experiment. In
order to account for this, the neutral densities at each temperature were calculated by
interpolating the argon and xenon saturated liquid curves as a function of T [163,164].
Dilute gas neutral density was approximated as being 300 times smaller than the liquid
extreme neutral density based on the equilibrium liquid-gas density ratios found in
molecular dynamics simulations of Lennard-Jones liquids [7–9,156].

In contrast to the simplified collision model used in the benchmark system in the
previous Section, each real fluid in Table 3.1 was measured at different temperatures
as well as densities. Note that a modification to the approximation method (3.36) is
required to account for varying temperatures and densities. To account for temperature
variation the derivation of the approximation (3.29) via energy balance (3.26) was
slightly modified to allow thermal components, 3

2kBT , to vary between the gas, liquid,
and intermediate densities.
Assuming the same CME assumption as previous derivations, and allowing Tg 6= Tint 6=
Tl it is found that ratios of the common mean energy minus thermal components
do not cancel in the approximation derived from energy balance, and one yields a
temperature-modified approximation rule

W 2
int(ε̄) =

(
xg

ε̄− 3
2kBTint

ε̄− 3
2kBTg

Ěg(ε̄)Wg(ε̄) + xl
ε̄− 3

2kBTint
ε̄− 3

2kBTl
Ěl(ε̄)Wl(ε̄)

)
xgsl(ε̄) Ěg(ε̄)Wl(ε̄) + xlĚl(ε̄)Wg(ε̄)

×

sl(ε̄)Wg(ε̄)Wl(ε̄)

sint(ε̄)
. (3.38)

To ensure accurate input data to the approximation method (3.38), multi-term solutions
of Boltzmann’s equation [10,15] were computed to obtain transport properties for argon
and xenon in both dilute gas and liquid extreme conditions. In low density dilute gas
and high density liquid states, electron scattering cross sections were taken from the
recent ab initio refinements that take into account density dependent scattering and
screening effects [12,15] to obtain increased accuracy. To demonstrate the validity of the
calculated transport data in gas and liquid extremes, comparison against experimental
results is included in Figures 3.8 and 3.9. Gas phase drift velocity measurements are
taken from the work of Pack et al. [14], while liquid argon and liquid xenon measurements
are taken from Miller et al. [13] and Huang and Freeman [16] respectively.

The angle-integrated structure factors for the liquid extrema and the intermediate
fluid, sl and smix, were approximated as per the benchmark model atomic liquid used
in Section 3.3.3. For liquid argon and xenon this work evaluates the analytic static
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structure factor expression of Verlet and Weiss (3.18) using relevant parameters for
argon and xenon, because it has been shown that despite the complex interaction
at high densities the expression of Verlet and Weiss is a good approximation to the
structure factor for noble liquids [8,65]. With accurate data for gas and liquid extremes,
and a temperature modification to the approximation rule (3.38), benchmarking was
performed to compare the approximation of the steady state drift velocity at an
intermediate temperature/density for both liquid argon and liquid xenon against
experimental results of Gushchin et al. [11]. The results are shown in Figures 3.8 and
3.9.
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Figure 3.8: Electron drift velocity in liquid argon at 130 K. Present approximation
computed via equation (3.38) compared with experimental results of Gushchin et al. [11].
Reference data: Boyle et al. [10, 12], Miller et al. [13], Pack et al. [14].

From the experimental work of Gushchin et al. [11] errors of approximately 5%
each were quoted for measurement of the drift velocity and applied electric field, and
errors of approximately 10% was quoted for the computation of electron mean energy.
Carrying these errors through the approximations used in this study, one can include
estimated error bars on each line series for the intermediate drift velocities in Figures
3.8 and 3.9.

In Figures 3.8 and 3.9, there is a good agreement between the approximate values
computed via (3.38) and experimental measurements within the uncertainties displayed.
Despite no knowledge of the intermediate steady state transport properties, the complex-
ities of the electron scattering cross section changing between gas and liquid densities,
and an approximate treatment of the effects of structure, both approximations provide
a good estimation of the drift velocity in the intermediate fluid densities.
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Figure 3.9: Electron drift velocity in liquid xenon at 230 K. Present approximation
computed via equation (3.38) compared with experimental results of Gushchin et al. [11].
Reference data: Boyle et al. [10, 15], Huang and Freeman [16], Pack et al. [14].

The liquid argon approximation provides the best fit of the two atomic systems
considered, with a strong qualitative and functional agreement between experiment and
calculated data. An encouraging feature of the liquid argon result is the ability of the
approximation to demonstrate a gradient change that occurs at roughly 10−3 Td. For
liquid xenon, the prediction of NDC at low fields is also an encouraging result of the
approximation. The magnitude and window of reduced fields at which the approximated
NDC occurs is not exactly replicated, but the ability of the approximation rule to
predict NDC by employing very simple structure assumptions shows the utility of the
proposed approximation. Future improvements in approximating the intermediate
density structure effects via experimental structure factors, and including interaction
potential screening effects, may yield even greater accuracy in approximating complex
transport behavior.

3.5 Chapter Summary

The work in this Chapter has proposed expressions (3.36) and (3.38) to approximate
electron transport at intermediate densities in the gas-liquid interfacial region from data
in the gas and liquid extreme phases only. To formulate the approximation method,
this Chapter extended well known mean energy dependent gas phase mixture rules into
high density fluids which exhibit non-linear density dependent transport properties.
The final approximation applies a simple analytic structure modification to account for
non-linear density effects on electron momentum transfer, and this was benchmarked
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with simple atomic liquid models. Following analysis of structure induced momentum
transfer effects, an approximation derived from energy balance between electrons and
structured media was benchmarked and demonstrated suitable accuracy for a wide range
of reduced fields. Improved accuracy could be achieved with higher-order momentum
transfer theory [76, 161]. Finally, to form a practical approximation rule that can
be used without any knowledge of the reduced field’s dependence on mean energy,
approximations derived from energy balance and modified momentum balance were
combined and the subsequent expression was benchmarked.

Steady state transport properties of a simple atomic liquid model plus experimental
data of argon and xenon liquids were assembled for comparison. By applying the final
combined drift velocity approximation (3.36), and (3.38) for including temperature
variation in the experimental benchmarks, this Chapter demonstrated the utility of
the approximation in predicting drift velocities of intermediate fluids between gas and
liquid extremes. It was subsequently demonstrated that reduced momentum collision
frequencies can be approximated with sufficient accuracy, to serve as input data in
higher order electron moment modeling. For the majority of model and experimental
gases and liquids the qualitative agreement between approximations and known results
was strong. Despite the encouraging performance of the proposed approximation rule,
comparison against argon and xenon experimental results demonstrated the complex
interaction potentials of real liquids pose a challenge and further study should be carried
out on including low-energy screening effects into the approximation of intermediate
structure factors, smix. In addition, further enhancements on the implementation of an
angle-integrated structure factor should be studied to account for the structure of even
more complex liquids, such as polar molecular liquids like water.

With the foundation of an interfacial modeling framework proposed in the previous
two Chapters, the following Chapter aims to bring together the results presented thus
far in this work. Application of the higher order fluid modeling method, along with
density-dependent input data proposed in this Chapter, will be made to simulating
swarm and streamer propagation between the two extremes of an argon gas-liquid
system.

Chapter Appendix: Dilute gas mixture rules

To provide the foundation for an approximation of electron collision rates at intermediate
densities between a gas and liquid, methods of approximating drift velocities in dilute
gas mixtures were reviewed. Various rules have been used in literature, but all are based
on the premise of density fractions, xα = nα/ntotal, computed for each constituent gas
being used to scale steady state drift velocities of each constituent gas to provide an
approximate of the mixture’s steady state transport data.
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Blanc's law

The origin of mixing rules in gas phase charged particle transport can be traced to
Blanc’s empirical law [157]

1

Wmix

(
E
n0

) =
∑
α

xα

Wα

(
E
n0

) , (3.39)

where Wmix is the mixture drift velocity, xα is the density fraction of gas α such
that

∑
α xα = 1, and Wα is the drift velocity in gas α. All drift velocities are evaluated

at a common value of reduced electric field, E/n0; which has since been termed a
common E/n0 (CEON) approach [158].

By the mid 20th century experimental results necessitated modifications to Blanc’s
law,

1

Wmix

(
E
n0

) =
∑
α

xα

Wα

(
E
n0

) + δB

(
E

n0

)
, (3.40)

where δB is some deviation from the original law to include higher order effects and
inelastic collisions [158,165,166]. Multiple approaches to computing deviations were
presented, from rigorous kinetic theory arguments to empirical observations based
on new experimental observations. It was shown that Blanc’s law was suitable for
approximating ion transport in gas mixtures, whereas it failed significantly for electron
transport, without severe modifications to the original law [158,159,166–168].

The breakdown of Blanc’s law for electrons can be understood as a failing of the
following two assumptions:

1. that electron impact cross sections can be added in simple linear combinations at
a given value of E/n0 [165], and

2. the steady state EEDF is the same for each gas, and the combination mixture, at
a given value of E/n0 [158].

In general, these assumptions will fail owing to the rapidly varying electron mean
energy with increasing E/n0, and the strong dependence of energy transfer on inelastic
collisions, which may occur at vastly different field ranges for different gases. These
failings of the CEON method led to an alternative mixing rule based on a common
mean energy (CME) as proposed by Chiflikian [159].

Common mean energy procedure

The CME rule is in the spirit of modern plasma moment modeling in the sense that
transport is defined as a function of charged particle mean energy ε̄ [69,89,96,97,104,145],
instead of the reduced field E/n0. Two variations of a CME rule may be derived from
the steady state momentum and energy balance equations for charged particle transport
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in a plasma to yield two slightly different equations, corresponding to either momentum
(p = +1) or energy balance (p = −1)

1 =
∑
α

Ěα (ε̄)

Ěmix (ε̄)

[
Wmix (ε̄)

Wα (ε̄)

]p
,

where Ěmix = Emix/n0 of the mixture, Ěα = Eα/n0 in gas α, Wmix is the drift velocity
in the mixture, and Wα is the drift velocity in gas α. All terms are evaluated at the
same value of mean energy ε̄.

Adopting either of the two CME approximations was shown to be suitable for
both ions and electrons in various gas mixtures. In contrast to Blanc’s Law, inelastic
collisions are natively included in the general theory [158, 159]. Furthermore, the
accuracy of the rule is also not restricted to a two-term EEDF theory, as arbitrary
steady state EEDFs are assumed in the derivation [158].
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4
Electron swarm and streamer transport

at the gas-liquid interface

This chapter contains material that was submitted as the following journal article:
NA Garland, I Simonović, GJ Boyle, DG Cocks, S Dujko and RD White. Electron

swarm and streamer transport across the gas-liquid interface: a comparative fluid model
study. Submitted to Plasma Sources Science and Technology on the 29 of April 2018.

This Chapter includes electron transport data computed by GJ Boyle via multi-
term solution of the Boltzmann equation. This data serves as input to the fluid model
discussed in this Chapter.

4.1 Chapter Introduction

The aims of this Chapter are to extend the proposed and benchmarked higher order
four moment fluid model [2], as well as drift diffusion fluid models [76,89,93,95,104], to
simulate electron transport across gas-liquid interfaces and formulate a recommendation
for best practice future interfacial modeling. Interfacial considerations will be addressed
by comparing the types of fluid model used but also through comparison of functional
form assumptions for neutral density, n0, variation of the interface. Inclusion of gas-
liquid interface effects, such as variation of delocalized electron energy level, V0, and
dielectric permittivity, ε, into the proposed modeling framework is also addressed.

This Chapter begins by briefly reviewing fluid models used for electron transport
in gases and liquids in Section 4.2 where distinctions between gas and liquid phase
electron transport are highlighted. In Section 4.3 a continuous fluid model of electron
transport between gas and liquid media is proposed, with modifications to include
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certain interfacial effects discussed. The results of the proposed interfacial fluid models
are detailed in Section 4.5, with key advantages and disadvantages of each model
highlighted. Finally, in Section 4.6, key recommendations drawn from the results of
this study are made, with a focus on how to best accommodate interfacial electron
transport in future fluid models.

4.2 Fluid modeling in gases and liquids

4.2.1 Fluid models for electron transport

Fluid models have been used to describe plasma phenomena such as streamers [95, 104,
169], industrial plasmas used in fabricating microelectronics [100,170], and more recently
bio-medical [34,50] applications of discharges. Fluid models are essentially continuity
equations of velocity-averaged, spatially varying macroscopic variables, such as particle
density, momentum, and energy [2, 76,89,95,104] derived via velocity moments of the
Boltzmann equation [2, 94]. This gives a relatively straightforward macroscopic model
that provides a good description of the discharge dynamics, without the computational
overhead of comprehensive microscopic methods such as particle based methods like
Partice-in-Cell (PIC) or Monte Carlo (MC) [65, 171, 172], or kinetic solutions of the
Boltzmann kinetic equation [90,93,95,96,100,105] that directly yield an electron velocity
distribution function (EVDF) as a function of space, velocity, and time f (r,v, t).

This study selected three approaches to fluid modeling, and examined the results
and subsequent appropriateness of each model towards describing interfacial electron
transport between gas and liquid densities of liquid argon. Here a brief review of the
selected fluid models is presented, with the finer details of the origins and formulations
of the models deferred to previous comprehensive studies on fluid modeling specifically
[2, 76,89,93,95,104].

Drift diffusion models

The most popular approach to fluid modeling of electron transport in gaseous plasmas
has traditionally been a hydrodynamic drift diffusion continuity equation (4.1) of the
electron density, ne (z, t) =

∫
f(r,v, t) dv. The electron flux is obtained by assuming a

steady-state of the momentum balance equation, and that the field-driven component
of electron energy is much greater than the thermal contribution [93, 96, 103,104]. The
resulting one dimensional continuity equation is

∂ne
∂t

− ∂

∂z

[
neW

(
E

n0

)
+D

(
E

n0

)
∂ne
∂z

]
= ne

[
νI

(
E

n0

)
− νa

(
E

n0

)]
, (4.1)

where input data terms are the drift velocity, W , diffusion coefficient, D, and ionisa-
tion/attachment collision rates, νI and νa. All input data are assumed to be functions
of the local instantaneous reduced electric field, E

n0
, during the simulation.
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Interpolation of steady state transport coefficients and collision rates is used to
provide values for these input parameters. The steady state values are obtained from
the steady state electron velocity distribution function (EVDF) which can be found
via Monte Carlo simulations [65, 87] or a multi-term kinetic solution of the Boltzmann
equation [10, 48, 94, 132], given appropriate microscopic inputs of electron scattering
cross sections for the target gas (see Section 4.2.2).

In addition to the electron continuity equation (4.1), continuity equations for
positive, n+, (via ionisation reactions) and negative, n−, (via attachment reactions)
ion densities are used

∂n+
∂t

= neνI

(
E

n0

)
, and ∂n−

∂t
= neνa

(
E

n0

)
, (4.2)

where ion transport has been neglected over the transient time scales considered in
this study for ionisation front propagation [95,104]. Recombination of electrons with
positive ions, and negative ions with positive ions is neglected in this study.

Alongside the continuity equations for charged species densities (4.1) - (4.2), the
space charge effects on the electric field, E, must be computed to determine any
screening effects due to the creation of electrons and ions. This is done by solving the
Poisson equation for electric potential, V , to obtain the electric field

∂2V

∂z2
=

e

εrε0
(ne + n− − n+) , (4.3)

E = −∂V
∂z

, (4.4)

where e is the elementary charge, εr and ε0 are the fluid’s relative and the vacuum
dielectric permittivities respectively.

While the model described by (4.1) - (4.4) has been traditionally used to describe
charged particle transport within gases, the functional form of the model has been
demonstrated to be applicable to describe transport within liquid discharges assuming
appropriate modifications to the input data are made [2]. As the neutral density
increases the single-scattering assumption used for gas transport breaks down as
the effects of elastic coherent scattering and electron interaction potential screening
and polarization become important [10, 15, 48]. These effects are significant when
the electron de Broglie wavelength is comparable to the average background particle
spacing, λ ∼ n

− 1
3

0 , which corresponds to low-energy electron scattering or scattering in
very dense liquids.

Comprehensive formulations are available on how to modify gas phase electron
interaction cross sections of non-polar atomic targets, such as noble liquids, to account
for coherent scattering [48], and later the interaction potential screening and polarization
[12,15]. These structure modifications were implemented through a density dependent
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momentum transfer cross section

Σm(v, n0) = 2π

∫ π

0
Σ(v, χ, n0)[1− cosχ] sinχdχ, (4.5)

where v is the incoming electron speed, χ is the electron scattering angle off the
target atom, and Σ(v, χ, n0) is an effective differential cross section including coherent
scattering and interaction potential modifications via

Σ(v, χ, n0) = σ̃(v, χ)S(∆k, n0) , (4.6)

where σ̃(v, χ) is the liquid phase differential cross section containing any screening and
polarization effects [12,15], S(∆k, n0) is the static structure factor and ∆k =

2mev

~
sin χ

2
is the wave number proportional to the change in momentum [48], where me is the
electron mass and ~ is reduced Planck’s constant. The static structure factor is a
non-linear function of n0 of the target material, and may be calculated from molecular
simulations, measured via experiments [15, 48, 65], or derived analytically through
solutions of pair-correlation functions as per the Verlet-Weiss corrected Percus-Yevick
structure factor [83]. For detailed discussion on the static structure factor, and its
implementation in liquid scattering, readers are directed to previous studies [15, 48, 65].

These fundamental liquid transport studies demonstrated substantially different
cross sections for liquid transport at low incoming electron energies compared to
transport in gas phase, particularly in reduced momentum transfer from preferential
forward scattering [12,15]. It was shown that, while energy transfer was impacted by
modifications of the cross section due to potential screening, energy transfer was not
explicitly modified by including coherent elastic scattering effects [48,76] and energy
transfer due to inelastic excitation collisions is considered localized to the immediate
target atom. In summary, the functional form of the balance equations used to model
electron transport is the same whether transport is in gas or liquid. However, explicit
modifications to include liquid phase physics must be performed [10,48] to obtain the
appropriate cross sections for computing electron transport data. If the correct cross
sections are used to generate input data for either gas or liquid transport, then the
drift diffusion model (4.1) - (4.2) can then be applied directly.

Higher order models

In addition to drift diffusion fluid models, so called higher order fluid models have
gained popularity for modeling charged particle transport in plasmas [2, 94, 95, 146].
In these models, the hierarchy of velocity moments of Boltzmann’s equation is not
truncated at the electron flux, but often extends to include four continuity equations
for electron density, ne, electron particle flux, Γ = ne〈v〉 =

∫
f(r,v, t)vdv, electron

mean energy density, nε = ne 〈ε〉 =
∫
f(r,v, t) 1

2mv
2dv, and electron energy flux,

Γε = ne〈ξ〉 =
∫
f(r,v, t) 1

2mv
2vdv, where 〈v〉, 〈ε〉, and 〈ξ〉 denote the electron average

velocity, average energy, and average energy flux. Following the formulation of a four
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moment higher order model benchmarked in gas and liquid transport [2], the system of
equations are

∂ne
∂t

+
∂Γ

∂z
= ne(νI(〈ε〉)− νa(〈ε〉)) , (4.7)

∂Γ

∂t
+

∂

∂z
(neθm(〈ε〉)) + ne

e

me
E = −Γνm(〈ε〉) , (4.8)

∂nε
∂t

+
∂Γε
∂z

+ eEΓ = −nSε(〈ε〉) , (4.9)

∂Γε
∂t

+
∂

∂z
(nθξ(〈ε〉)) + nθm(〈ε〉) eE + nε

e

me
E = −Γενξ(〈ε〉) , (4.10)

∂n+
∂t

= neνI(〈ε〉) ,
∂n−
∂t

= neνa(〈ε〉) , (4.11)

where input data is required via collision rates for for ionisation, νI , attachment, νa,
momentum transfer, νm, energy transfer, Sε, energy flux transfer, νξ, and higher order
tensor product closure approximations, θm, and θξ.

In this model, the higher order moments, θm = 〈vv〉 and θξ =
〈
1
2mv

2vv
〉
, are closed

by evaluation over the equilibrium steady-state EEDF used to also evaluate collision
input rates, similar to that of the input data described in Section 4.2.1. This choice
of closure was demonstrated to provide a parameter free, physically sound alternative
to other closure assumptions, such as heat flux assumptions or parameterizing the
moments in terms of 〈ε〉, previously used in literature [2, 95,146].

The same process for generating a look-up table of steady state input data via
an equilibrium EEDF, described in Section 4.2.1, is used for this higher order model
also. Higher order models differ to drift-diffusion models because more information of
electron dynamics is natively included, so that phenomena such as temporal and spatial
non-locality can be resolved [104]. In lieu of using E

n0
to determine input data as per

the drift-diffusion model, here the electron mean energy, 〈ε〉, is used as the interpolating
variable to determine input data at each point in space during the simulation [101].

As discussed in Section 4.2.1, for a local field dependent model, a higher order model
can also be equally applicable in gas or liquid, assuming the correct modifications have
been made to generate accurate input data to account for liquid effects. For further
details on the higher order moment model used in this study the reader is referred to a
recent formulation and benchmarking study [2].

4.2.2 Transport data in gaseous and liquid argon

This Section presents the microscopic input of electron scattering cross sections for
electrons with gaseous and liquid argon, in addition to the resulting transport and
collision data that serves as input to the fluid models presented in Section 4.2.1.
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Electron scattering cross sections

As this study involves both gas and liquid extremes of argon, two sets of electron
scattering cross sections are required in order to generate input data for fluid models
via kinetic solutions of the Boltzmann equation or Monte Carlo simulations.

The gaseous argon electron scattering cross sections of Hayashi [17] were used as
input to a multi-term solution of the Boltzmann equation to generate input data for
this study. The set comprising of an elastic momentum transfer cross section (MTCS),
twenty five inelastic excitation cross sections, and an ionisation cross section were
retrieved from the online database www.lxcat.net [69].

As recommended by recent studies of electron transport and negative planar streamer
fronts in atomic liquids [173,174], liquid argon cross sections were compiled from recent
works on accurate low-energy liquid cross sections, combined with necessary modification
of the gas phase Hayashi cross sections for inelastic processes. To form the basis of
the MTCS scattering cross section, the low-energy (≤ 10 eV) MTCS for liquid argon
proposed by Boyle et al. [12] was taken in order to include the effects of coherent
scattering and atomic potential screening which are critical for low-energy electron
scattering in dense liquids. At higher incoming electron energies, where the liquid cross
section converges to the gas cross section, the gaseous argon MTCS of Hayashi [17] was
once again used. These two elastic scattering cross sections were joined and smoothed
at ∼ 10 eV to form a single elastic scattering cross section.

As precise measurements, or calculations, of liquid phase ionisation cross sections
do not exist for atomic argon, a liquid argon ionisation cross section was constructed
by modifying the gaseous argon ionisation cross section as detailed in [62, 175–177].
The liquid argon ionisation threshold energy, Iliq, was computed by modifying the the
gaseous argon threshold energy, Igas = 15.68 eV, to account for dense liquid effects. The
known gaseous ionisation cross section of Hayashi [17] was then translated to the new
threshold energy for liquid. The foundation and derivation of these modifications are
detailed in [62], and the key result relevant to this present study can be summarized by
the expression

Iliq = Igas + P+ + V0 + Eval, (4.12)

where P+ is the ion polarization energy of the positive ion (P+ = −1.08 eV for
argon [62]), V0 is the energy of the delocalized electron level in the liquid i.e. the
bottom of conduction band (V0 = −0.3 eV for the liquid argon density used in this
study [175]), and Eval is the change in energy of valence bands due to condensing the
gas (Eval = 0.1 eV for argon [62]). This process yields the ionisation threshold energy
of Iliq = 14.4 eV.

The inelastic excitation cross sections of the Hayashi database set were then slightly
modified to form a set of inelastic excitation cross sections for liquid argon. This
was done by excluding any excitation process with a threshold energy above the new
ionisation threshold energy [173, 174], which for liquid argon is Iliq = 14.4 eV. As a

Chapter 4. Electron swarm and streamer transport at the gas-liquid interface 86



Garland, Nathan Electron transport modeling in gas and liquid media

result, the excitation cross sections corresponding to threshold energies of 14.71 eV and
15.2 eV were excluded from the data set, and the remaining twenty three cross sections
formed the final inelastic excitation cross section set for liquid argon. The final sets of
electron scattering cross sections in both gas and liquid argon are shown in Figure 4.1.
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Figure 4.1: Gas and liquid argon electron scattering cross sections utilized in this study.
Gas cross section data of Hayashi [17] via www.lxcat.net. Liquid cross section data of
Boyle et al. [12] and necessary modifications of Hayashi set detailed in Section 4.2.2.

Fluid model input electron transport data

Using the electron scattering cross sections for both gas and liquid argon extremes (see
Figure 4.1) equilibrium electron transport data was calculated to serve as input data
for the fluid models used in this study. A multi-term solution of the Boltzmann kinetic
equation [10,12, 76] was used to calculate EEDFs over a range of reduced electric field
values at 85 K, a common cryogenic temperature, near the triple point, used in argon
applications and experimental studies [11, 155, 178, 179]. These energy distribution
functions were then used to calculate the steady state transport data necessary for
input to the fluid models used in this study. Plots of electron drift velocity, longitudinal
diffusion, and ionisation collision rate, used as input for (4.1) - (4.2), are shown in
Figure 4.2; though not used as a model input, a plot of the electron mean energy as a
function of reduced field is included to demonstrate key differences between gas and
liquid transport.
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Figure 4.2: Input transport data of electrons in argon for local-field dependent electron
fluid models. Dashed lines denote gas transport, dotted lines denote liquid transport.
(Top-left) Drift velocity versus reduced field. (Top-right) Electron mean energy versus
reduced field. (Bottom-left) Longitudinal reduced diffusion coefficient versus reduced
field. (Bottom-right) Reduced ionisation collision rate versus reduced field.

Reduced collision rates for input to the higher order fluid model, computed from
equilibrium steady-state EEDFs found via multi-term solution of the Boltzmann equa-
tion [10], are presented in Figure 4.3 demonstrating the variation of collision rates for
momentum transfer νm/n0, energy flux transfer νξ/n0, lumped energy loss Sε/n0, and
ionisation νI/n0. Input closure terms θm = 〈vzvz〉 and θξ = 〈v2vzvz〉 for the higher
order model are shown in Figure 4.4, where the expectation value is computed over the
steady-state EEDF [2,94].
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Figure 4.3: Input collision rates of electrons in argon for mean energy dependent
higher order fluid model. Dashed lines denote gas transport, dotted lines denote liquid
transport.
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Figure 4.4: Input closure terms for mean energy dependent higher order fluid model for
electrons in argon. (Left axis) Momentum balance closure term θm = 〈vzvz〉. (Right
axis) Energy flux balance closure term θξ = 〈v2vzvz〉. Dashed lines denote gas transport,
dotted lines denote liquid transport.

4.3 Modeling at the gas-liquid interface

Following the brief review of fluid modeling methods and associated input data for
electrons in either gas or liquid presented in Section 4.2, it is pertinent to now discuss
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necessary interfacial effects that should be considered when trying to model electron
transport between gas and liquid extrema as a continuous process. This study considers
four important variations across the gas-liquid interface: (i) functional form of the
variation in n0, (ii) variation of of input data for fluid models across the interface,
(iii) variation of the delocalised electron energy level, V0, across the interface, and (iv)
variation of the relative dielectric permittivity, εr, across the interface.

4.3.1 Density profile variations

In order to accurately model electron transport between a gas phase plasma and a
condensed liquid, the composition of the interfacial region must be known. This study
assumes the existence of an equilibrium interfacial density profile formed between gas
and liquid phases for atomic fluids, as outlined in Figure 4.5. The existence of this
interfacial profile in non-polar atoms, such as argon and xenon, has been probed in
various molecular dynamics (MD) and Monte Carlo (MC) studies [7–9, 156]. These
simulations employ Lennard-Jones (LJ) potentials as an approximation to the atomic
interaction potentials between each atom [7–9, 156]. Key measurables from these
studies were equilibrium liquid and vapor densities, surface tension, and interface layer
thickness, δint. Kalos et al. [155] performed MD simulations of argon gas-liquid interface
formation, resulting in a well defined interface thickness of approximately 5σLJ, where
σLJ is the atomic diameter used in the LJ potential. Later MD and MC studies of
various noble liquids [7–9, 180] confirmed the earlier simulation results of Kalos et
al. [155].

To implement the density change over the gas-liquid interface, this work assumes
the equilibrium liquid density is 300 times greater than the equilibrium vapor density,
which is consistent with the computational and experimental results found in literature
[8,9,180]. The ratio between liquid and vapor densities in equilibrium (nl/ng) reported
was variable depending on the cut-off distance chosen for the LJ potential used in the
MD simulations [8,9,180]. Trokhymchuk and Alejandre [8] studied the impact of cut-off
distances for LJ potentials and found liquid-vapor density ratios from 200:1 up to 500:1,
depending on the cut-off distance from 2.5σLJ to 5.5σLJ, while Ishiyama et al. [180]
simply cut-off the LJ potential at 15 Å in all their simulations.

A commonly proposed functional form describing the interfacial density variation is
a hyperbolic tangent function [9, 180]

n0 (z) =
1

2

(
neq
g + neq

l

)
− 1

2

(
neq
g − neq

l

)
tanh

(
2 (z − zint)

δint

)
, (4.13)

where neq
g and neq

l are the gas and liquid equilibrium densities, zint is the center position
of the interface, and δ is a measure of the thickness of the interface, defined as the
distance between 90% and 10% of the liquid density. This value, δint, can be defined
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as [9]

δint = −
(
neq
g − neq

l

)( dn0 (z)
dz

∣∣∣∣
z=zint

)−1

, (4.14)

or is fitted from a least squares method [180].

z

n
0

Figure 4.5: Equilibrium argon vapor-liquid interface as determined by molecular
dynamics simulations [7–9]. The interface transition region is marked explicitly.

4.3.2 Fluid model input data for continuum models between gas and liquid

phases

With a well defined density configuration of the equilibrium interface between gas and
liquid argon extremes, now consider the effects of this density variation on the required
fluid model input data. One question to probe in this study, is whether or not one
must use n0 dependent input data between gas and liquid density extremes, or if it is
sufficient to simply use pure gas and liquid data either side of a defined interface point,
z0, akin to a step-function profile. One factor to consider in answering this question is
the electron-neutral collisional mean free path

λmfp ≈ 1

n0σ
, (4.15)

where n0 is some neutral background density and σ is an electron scattering cross section.
For gas, liquid, or intermediate densities, a range of mean free paths can be calculated
to determine if the collisional scattering dynamics and any non-equilibrium behavior
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will impact transport in the interfacial transition between gas and liquid. Typical
liquid argon densities are neq

l ≈ 1028 m−3 while the gas density at the equilibrium
interface used in this study is roughly 300 times smaller than the liquid, resulting in
mean free paths for electron scattering in liquid argon in the range 1− 100nm, while
the corresponding mean free path range in gaseous argon is 0.3 − 30µm. Since the
equilibrium interfacial region in argon is on the order of nanometers one must consider
n0 dependence in fluid model transport data in this interfacial region.

At this point, it is worthwhile to appropriately label fluid models introduced in
Section 4.2.1, and define explicitly whether n0 dependent input data is used. Firstly,
the simplest fluid model used in this study will not consider liquid effects at all, as
an instructive example to the validity (or otherwise) of simply “scaling-up” gas phase
transport data to liquid densities. This fluid model is a drift-diffusion model described
by equations (4.1) - (4.2), and utilizes the gas phase input data presented in Figure
4.2 as a function of E

n0
. As argon is a non-attaching gas, the attachment rate, νa,

is neglected for the remainder of this work. This model is henceforth referred to as
LFAG, as it uses a local field approximation with gas phase data only.

Secondly, a local-field dependent drift-diffusion model (4.1) - (4.2) will be util-
ized with provision for n0 dependent input data. This dependence is introduced by
asserting the W , DL and νI input parameters of (4.1) - (4.2) are now functions of
both the instantaneous reduced electric field and neutral density across the interface,

f

(
E

n0

)
→ f

(
E

n0
, n0

)
. This model will henceforth be referred to as the LFA model.

Finally, taking the higher order model presented in (4.7) - (4.11) one may recast the
functional form of the input parameters such that any input parameter dependent on
electron mean energy is now also a function of the neutral density f(〈ε〉) → f(〈ε〉 , n0).
As this is a higher order four moment model this model will henceforth be referred to
as the 4MM model. Input data requirements accounting for the density variation for
both the LFA and 4MM models are discussed and presented in 4.6 using the results of
a recently proposed and benchmarked study [3].

4.3.3 Space-charge field & spatially varying permittivity

With any plasma problem a self-consistent calculation of the instantaneous electric
field, E = E (z, t), must be included alongside equations describing particle transport.
This is generally achieved via solutions of a Poisson equation for the spatially varying
electric potential, ϕ = ϕ (z, t), before differentiating to find the electric field, E. Here it
is necessary to account for the variation in dielectric properties between gas and liquid
densities. A spatially varying relative dielectric constant, εr = εr (z), was computed
using the same tanh function (4.13) used to modulate n0, where liquid and gaseous
argon constants were taken as εlr = 1.504 and εgr = 1.0005 respectively [181]. To
accommodate the spatially varying dielectric constant in an inhomogeneous, isotropic
material one may then self-consistently solve

∂

∂z
(εr (z) ε0E) = e (nion − ne) , (4.16)
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given that E = − ∂

∂z
ϕ, where boundary conditions on the electric potential are ϕ (0, t) =

0 and ϕ (L, t) = ϕapplied where ϕapplied is a fixed voltage to produce the desired applied
electric field in the absence of space-charge contributions.

4.3.4 Accommodating spatial variation of V0 across the interface

As gas densities increase to liquid values, it is vital to also consider the variation in
the energy of the delocalized electron level in the liquid, V0. This can be positive
(neon, helium) or negative (argon, xenon) and is largely a function of the electron
scattering length, a0, of the target atom [62,175]. The dependence of V0 on the neutral
atomic density of argon, n0, demonstrates an approximate linear roll-off of from 0
eV in gas down to approximately -0.3 eV at the maximum liquid density used in this
study [62, 175]. Given a known equilibrium n0 (z) profile, and thus an equilibrium
V0 (z), an effective electric field is found by differentiating V0 (z), and combined with
the electric field, E, computed via (4.16) to yield the total electric field

Etotal = E + EV0 . (4.17)

4.4 Numerical solution of system of hyperbolic PDEs

Numerical solution of each fluid model was performed by a custom Flux-Corrected
Transport (FCT) code, with explicit fourth order Runge-Kutta time-integration used to
advance forward in time [150–152]. Spatial discretization was performed by augmenting
a monotonic first order upwinding scheme [182], with a second order conservative finite
difference scheme. The flux limiting algorithm of Boris and Book [150,151] was used
to enable resolution of sharp gradients found in ionisation fronts. To account for the
varying length scales present in the problems, this research employed variably spaced
grids to allow spatial steps appropriate to liquid, gas, and interfacial regions. Given
spatial grid sizes, time step size was chosen as the smallest step computed via: (i) a
Courant–Friedrichs–Lewy (CFL) condition of 0.05, or (ii) 1/20 of the the fastest collisional
relaxation time. To ensure the accuracy of this scheme, systematic benchmarking was
performed by comparing numerical solutions against known analytic solutions, and
ensuring particle conservation was guaranteed at each time step. Typical systems used
for benchmarking are square-wave advection, Gaussian pulse advection-diffusion, and
the solution of Euler’s equations for Sod’s shock-tube [150–152].

Initial conditions for simulation of streamer formation and propagation were assumed
as a narrow Gaussian pulse of electron/ion densities created by an arbitrary ionisation
event prior to the simulation start. Electron average velocity, mean energy, and energy
flux were assumed to be the steady-state values corresponding to the applied value
of E/n0 in liquid argon. Continuous boundary conditions were implemented to allow
passage of information outside of the solution domain to avoid impacting the solution.
To further assist in this aim, streamer formation and propagation was performed well
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inside the solution domain, away from the necessary boundaries, to minimize the impact
of boundary conditions.

4.5 Results and discussion

Using the fluid models and input data presented in Sections 4.2 and 4.3, transient
simulations of electron transport from liquid argon into gaseous argon (left to right in
this study’s frame of reference) and gaseous argon to liquid argon (right to left) were
performed. It is believed to be most instructive to start investigations with essentially
swarm transport in the liquid phase transitioning to gas phase, where fields and
ionisation rates are low, before considering cases where space-charge field considerations
are important due to ionisation events. To examine the impacts of electron transport
experiencing a gas-liquid interface transition in cryogenic argon, results from (i) large
macroscopic length scales to examine the overall qualitative nature of the results, and
(ii) small length scales at the immediate vicinity of the interfacial region in order to
examine the impact of the interface transition. Results are presented at early (2 ps),
intermediate (15 ps), and late (50 ps) times to demonstrate the physics of electron
transport over different time scales.

4.5.1 Simulation conditions

An applied reduced field magnitude of |E/n0| = 300Td in gas phase, corresponding to
0.8Td in the liquid, was applied to drive electrons into the gas-liquid interface; the
appropriate sign was assigned in each simulation to drive electrons left to right or vice
versa. In this study the neutral atom temperature was kept constant at T0 = 85K, a
commonly used cryogenic temperature for liquid argon experiments [41,178,183]. The
neutral density, n0, was varied using the the tanh function interfacial density ramp
(4.13), where neq

l = 1.8×1028 m−3 was obtained from the liquid argon coexistence curve
at 85 K [183]. The equilibrium gas density, neq

g = neq
l /300, and the 10-90 interface width,

δint = 10rAr, were taken from the equilibrium properties found in literature [8, 9, 180],
where rAr = 188pm is the Van der Waals radius of argon. Using the specified reduced
field strengths, and the density profile provided by a tanh function, the initial total
effective reduced electric field (4.17) is shown in Figure 4.6.
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Figure 4.6: Reduced electric field profiles for applied and V0 contributions for both
simulation configurations presented. Note that zero is included on the E/n0 logarithmic
axis to reinforce the zero contribution via the V0 potential far from the interface.

Naturally, the space-charge field effects will evolve over the course of simulations
but by simply considering the initial total fields assists in understanding of the results
presented in Sections 4.5.2 and 4.5.3. From the liquid to gas plot of Figure 4.6 it is
clear that the effective field due to V0 variation acts to impede electron transport from
the liquid to the gas, while conversely it enhances electron transport into the liquid
when the applied field is reversed on the right-hand plot.

4.5.2 Electron transport from liquid argon into gaseous argon

Initial conditions of narrow Gaussian pulses were used in a simulation of electron
transport across an interface, analogous to a single ionisation event within a liquid
argon detection chamber. Evolution of the electron density in Figure 4.7 shows the
initial pulse of electrons diffuses very quickly, leading to electron extraction from
liquid into the gas phase as electrons impinge on the interface region. Qualitatively,
both models predict similar results over all times however, it is clear the 4MM model
demonstrates higher rates of electron extraction from the liquid. The LFA model
predicts at least twice as much charge blocking on the liquid side of the interface
compared to the 4MM model. Examining the expanded interfacial region of Figure 4.7,
one sees the charge build-up at a narrow scale, with the 4MM result demonstrating two
distinct roll-off gradients across the interface. To interpret this structure it is beneficial
to consider the average electron velocity.
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Figure 4.7: Electron density evolution for 4MM and LFA models at short, intermediate,
and longer times as the electron swarm propagates from liquid to gaseous argon. Top
view: Macroscopic results. Bottom view: Expanded view of interfacial results. Initial
condition given by green dotted green line. Direction of field-driven propagation is
from left to right.
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Figure 4.8 demonstrates that far from the interfacial region, the average electron
velocity has relaxed to an equilibrium value. However, near the interface it can be seen
that initially the 4MM result predicts a large positive velocity, due to the large initial
diffusive flux, and never becomes negative. In contrast, at the immediate vicinity of
the interface the LFA model predicts a negative average velocity due to the blocking
field contribution of the V0 potential in liquid argon. As time continues, the magnitude
of these initially large velocities decreases but their sign differences remain. As the
distance over which the blocking field is applied is very small, and the time for mean
energy relaxation is quite long, the mean energy does not rapidly respond to the field
variation. This is an example of non-local electron transport that the LFA model cannot
predict, but the 4MM model can. These major differences in the average electron
velocity at the interface are the drivers for deviations in electron density results observed
in Figure 4.7.

Chapter 4. Electron swarm and streamer transport at the gas-liquid interface 97



Garland, Nathan Electron transport modeling in gas and liquid media

10
-5

10
-4

-10
4

0

10
4

10
5

4MM

LFA

10
-5

10
-4

-10
4

0

10
4

10
5

10
-5

10
-4

-10
4

0

10
4

10
5

1.432 1.434 1.436

10
-5

-10
4

0

10
4

10
5

4MM

LFA

1.432 1.434 1.436

10
-5

-10
4

0

10
4

10
5

1.432 1.434 1.436

10
-5

-10
4

0

10
4

10
5

Figure 4.8: Average electron velocity for 4MM and LFA models at short, intermediate,
and longer times as the electron swarm propagates from liquid to gaseous argon. Top
view: Macroscopic results. Bottom view: Expanded view of interfacial results. Initial
condition given by green dotted green line. Direction of field-driven propagation is
from left to right.
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The top half of Figure 4.8 also demonstrates a short, but persistent, relaxation
length on the liquid side of the interface well before the interface is encountered. It
is believed this gradual decrease in electron average velocity prior to the interface is
a further demonstration of spatial non-locality being predicted by the mean energy
dependent model, which the LFA model simply cannot predict owing to its reliance on
the instantaneous electric field, shown in Figure 4.9. From Figure 4.9 it is difficult to
see a significant variation in the total E/n0 over the lifetime of this transient simulation;
this is a result of the space charge effects being small compared to the applied field,
as indicated in the figure where the isolated contributions of space-charge effects are
plotted.
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Figure 4.9: Total E/n0 and space-charge (S.C.) contribution to E/n0 for 4MM and
LFA models at short, intermediate, and longer times as the electron swarm propagates
from liquid to gaseous argon. Top view: Macroscopic results. Bottom view: Expanded
view of interfacial results.

Figure 4.10 demonstrates the electron mean energy of the 4MM model to assist
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in interpreting the results of the preceding figures. It is clear that there is a gradual
relaxation of 〈ε〉 on the liquid side of the interface, consistent with the observed non-
local effects on electron transport in Figure 4.8. Far from the interface the mean
energy relaxes to the equilibrium value given by the value of E/n0 in the gas or liquid.
One should note a clear minimum in mean energy is observed at short times in the
expanded interface region of Figure 4.10 due to the relatively high transient electron
flux combining with the blocking field provided by the V0 potential through the Γ ·E
term in the energy balance equation (4.9). This energy reduction immediately at the
interface is only present at short times because of the large initial diffusive electron
flux. As this large initial diffusive flux subsides over time, the energy loss via the Γ · E
term becomes less significant, demonstrated at 15 and 50 ps.
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Figure 4.10: Electron mean energy for 4MM model at short, intermediate, and longer
times as the electron swarm propagates from liquid to gaseous argon. Top view:
Macroscopic results. Bottom view: Expanded view of interfacial results. Initial
condition given by green dotted green line. Direction of field-driven propagation is
from left to right.

4.5.3 Electron ionisation front transport from gaseous argon into liquid argon

This Section now presents and discusses results of directing an electron streamer front
in gaseous argon into liquid argon. This simulation was performed under the same
conditions as the previous section, apart from simply reversing the sign of the applied
electric field to yield a total reduced electric field configuration as shown in Figure 4.6.
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The initial condition to this simulation was provided by allowing a streamer front to
form in gaseous argon.

Examining the evolution of the electron density in Figure 4.11, one sees that the
initial electron density of the streamer tip is transported across the interface with a
notable attenuation of the electron density further into the liquid. At all times the LFA
model predicts a larger charge-build up at the gas side of the interface compared to the
4MM model, consistent with the noticeably lower speed at the interface arising from
the combination of the increase in n0 at the interface as well as space-charge screening
effects on E/n0 observable in both Figure 4.12 and 4.13 respectively.
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Figure 4.11: Electron density evolution for 4MM and LFA models at short, intermediate,
and longer times as the electron streamer tip propagates from gaseous to liquid argon.
Top view: Macroscopic results. Bottom view: Expanded view of interfacial results.
Initial condition given by green dotted green line. Direction of field-driven propagation
is from right to left.
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At longer times, the trailing electrons behind the initial streamer tip can be seen to
build-up on the gas side of the interface, while increased densities of electrons continue
to be transported through the liquid. Interestingly, at earlier times the 4MM model
predicts higher electron densities in the liquid but later at longer times the LFA model
predicts higher electron densities. This observation can be reconciled by comparing the
electron average velocity of Figure 4.12, where the 4MM average electron velocity on
the liquid side of the transition reaches a lower value than the LFA result. Once again
a clear spatial relaxation to the equilibrium drift velocity value is observed in liquid
argon for the 4MM model, which demonstrates the presence of spatial non-locality.
By experiencing lower speeds just after the interface transition, 4MM results predict
smaller values of ne in liquid at later times compared to the LFA model, which responds
directly to the instantaneous value of E/n0.
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Figure 4.12: Average electron velocity for 4MM and LFA models at short, intermediate,
and longer times as the electron streamer tip propagates from gaseous to liquid argon.
Top view: Macroscopic results. Bottom view: Expanded view of interfacial results.
Initial condition given by green dotted green line. Direction of field-driven propagation
is from right to left.
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In Figure 4.13 the explicit space-charge screening field is presented, alongside the
total field. It is the only time-varying contribution to the field, but has a small
magnitude compared to the fields presented in Figure 4.6, making its effect on the
total field difficult to see at these time scales. At longer time scales however, further
ion creation would occur and screening will begin to dominate the total reduced field
experienced by electrons.
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Figure 4.13: Total E/n0 and space-charge (S.C.) contribution to E/n0 for 4MM and
LFA models at short, intermediate, and longer times as the electron streamer tip
propagates from gaseous to liquid argon. Top view: Macroscopic results. Bottom view:
Expanded view of interfacial results.

Finally, to assist further in interpreting the 4MM results, it is valuable to consider
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the electron mean energy in Figure 4.14. On the gas side of the interface one sees the
mean energy gradually decay; as the high energy streamer tip makes its way through
the interface to the liquid argon, leaving the lower energy electrons at the rear of the
propagating streamer. On the liquid side of the interface, the mean energy gradually
rises before decaying to the equilibrium value, due to the high energy incoming electrons
entering from the gas. Once again the clear relaxation length has formed in the liquid
argon. It is instructive to note that in the expanded interfacial region of Figure 4.14 the
reduction in mean energy on the gas side, due to increasing collisional energy losses from
an increasing n0, experiences a slight increase over the interface due to the restorative
effects of the V0 field via the Γ · E term in the energy balance equation (4.9).

Chapter 4. Electron swarm and streamer transport at the gas-liquid interface 109



Garland, Nathan Electron transport modeling in gas and liquid media

10
-6

10
-5

10
0

10
1

10
-6

10
-5

10
0

10
1

10
-6

10
-5

10
0

10
1

7.71 7.72 7.73 7.74

10
-6

10
0

10
1

7.71 7.72 7.73 7.74

10
-6

10
0

10
1

7.71 7.72 7.73 7.74

10
-6

10
0

10
1

Figure 4.14: Electron mean energy for 4MM model at short, intermediate, and longer
times as the electron streamer tip propagates from gaseous to liquid argon. Top
view: Macroscopic results. Bottom view: Expanded view of interfacial results. Initial
condition given by green dotted green line. Direction of field-driven propagation is
from right to left.

4.5.4 Impact of step function input data

To determine if using a tanh function to modulate n0 at the interface, which necessarily
requires the density dependent fluid model input data, between gas and liquid extrema is
actually required over just a standard step function variation in the density, simulations
were repeated using a step-function between liquid on the left and gas on the right.
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From Figure 4.15, one sees that by assuming a step-function for the LFA model
the electron densities are much higher at all times over the macroscopic length scale.
Approximately twice as many electrons are transported into the liquid as compared
with any of the previous results. At the narrow length scale of the interface, the
step-function LFA result actually decreases prior to the interface before experiencing a
sharp build up of electrons on the liquid side; this is a starkly different qualitatively
result compared to any of the previous results obtained using the smooth tanh function.
On the other hand, while the step-function 4MM results are not equal to those achieved
through the tanh assumption, they are very similar and produce no notable deviations
compared to the LFA results.
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Figure 4.15: Effects of tanh or step-function interface on electron density evolution for
4MM and LFA models at short, intermediate, and longer times as the electron streamer
tip propagates from gaseous to liquid argon. Top view: Macroscopic results. Bottom
view: Expanded view of interfacial results. Initial condition given by green dotted
green line. Direction of field-driven propagation is from right to left.
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The step-function LFA electron density differences are consistent with a very high
average velocity at the interface, demonstrated in Figure 4.16, compared to any of the
previous simulation results. This order of magnitude difference in the average velocity
transports electrons into the liquid at a considerably higher rate compared to the results
using the tanh interface assumption. This high average velocity occurs due to a large
E/n0, produced due to the small, gaseous argon value of n0 assumed near the interface
instead of a gradually increasing value. Once again, compared to the distinctly different
observations of the LFA models there is no major deviation between 4MM results, with
the only noticeable difference being the discontinuity immediately at the interface.
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Figure 4.16: Effects of tanh or step-function interface on average electron velocity for
4MM and LFA models at short, intermediate, and longer times as the electron streamer
tip propagates from gaseous to liquid argon. Top view: Macroscopic results. Bottom
view: Expanded view of interfacial results. Initial condition given by green dotted
green line. Direction of field-driven propagation is from right to left.
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For completeness, Figure 4.17 shows the electron mean energy for the 4MM models
using both tanh and step-function assumptions.No major differences in 〈ε〉 are observed
for the two results, indicating why differences between 4MM results were quite negligible
in Figures 4.15 and 4.16. Since 〈ε〉 is observably insensitive to the form of interface
assumptions, and demonstrably a continuous variable, it is believed that it is a much
more reliable variable to use when determining input data compared to E/n0 which
suffers from being explicitly related to the assumptions imposed on n0.
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Figure 4.17: Effects of tanh or step-function interface on electron mean energy for 4MM
model at short, intermediate, and longer times as the electron streamer tip propagates
from gaseous to liquid argon. Top view: Macroscopic results. Bottom view: Expanded
view of interfacial results. Initial condition given by green dotted green line. Direction
of field-driven propagation is from right to left.
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4.5.5 Use of gas phase data to simulate liquid transport

As discussed previously in this study, there are major differences between gas phase and
liquid phase electron transport. To adequately model electron transport in liquids, one
should use input data derived with liquid state modifications, instead of simply using
density-scaled gas phase data. To demonstrate the disparity caused by using density-
scaled gas phase data over liquid phase data, this Section presents (i) a propagating
streamer simulation in homogeneous liquid argon, and (ii) a repeat of the interfacial
simulation presented in Section 4.5.2.

In Figure 4.18 the three fluid models used in this study predict varying stages of
streamer formation and then propagation in liquid argon. As streamer simulations in
homogeneous media are not the explicit focus of this study, further results and discussion
on liquid streamer modeling are deferred to an upcoming study, conducted in parallel to
this work, which will extend on previous liquid streamer modeling foundations [173,174].
In these simulations an initial narrow Gaussian pulse of electron/ion pairs is created by
an initial ionisation event. The simulation then follows the transport of these electrons,
and creation of ions, over time until the formation of a propagating streamer front is
obtained. It is very clear that by the time streamer fronts predicted by 4MM and LFA
models have formed, and subsequently propagated through the liquid, the LFAG model
prediction is still in the infancy of formation.
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Figure 4.18: Electron propagation of electrons in a streamer front within liquid argon.
Green dotted series denotes the initial condition. Evolution over time denotes major
differences when using liquid data, compared to simply scaling gas phase data.

Electron number density and average velocity results of the LFAG model, applied
to the electron swarm propagating from liquid argon to gaseous argon, are shown in
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Figures 4.19 and 4.20 alongside the previously discussed results of Section 4.5.2. At
all time samples, the LFAG model predicts fewer electrons extracted into the argon
vapor compared to both 4MM and LFA models. This observation is consistent with
the fact that at a given E/n0 the electron drift velocity is higher in liquid argon than
gas, enhancing electron extraction when accurate liquid phase data is used.
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Figure 4.19: Electron density evolution for 4MM, LFA, and LFAG models at short,
intermediate, and longer times as the electron swarm propagates from liquid to gaseous
argon. Top view: Macroscopic results. Bottom view: Expanded view of interfacial
results. Initial condition given by green dotted green line. Direction of field-driven
propagation is from left to right.

Chapter 4. Electron swarm and streamer transport at the gas-liquid interface 118



Garland, Nathan Electron transport modeling in gas and liquid media

In Figure 4.20 one can clearly see deviations from using gas phase data to predict
average electron velocities in the LFAG model, compared to previous results. As time
increases, the LFAG average velocity relaxes from the initial velocity, from liquid phase
data, to the gas phase equilibrium drift velocity corresponding to E/n0 = 0.8 Td.
Similarly, in the expanded interfacial plot the average velocity follows the general
trend of the LFA result, by following the instantaneous electric field, however with
consistently slower speeds predicted. These disparities in electron average velocity
predictions, which are consistent with the electron density observations in Figure 4.19,
demonstrate that care must be taken when choosing input data; gas phase data may
be readily available to the community, and is a tempting choice, but for reliable, and
physically grounded, predictions accurate liquid phase data must be incorporated into
the model.
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Figure 4.20: Average electron velocity for 4MM, LFA, and LFAG models at short,
intermediate, and longer times as the electron swarm propagates from liquid to gaseous
argon. Top view: Macroscopic results. Bottom view: Expanded view of interfacial
results. Initial condition given by green dotted green line. Direction of field-driven
propagation is from left to right.
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4.6 Chapter Summary

This Chapter has presented results from multiple fluid models simulating (i) an electron
swarm propagating from liquid argon into gaseous argon over an equilibrium interface
density variation, and (ii) an electron streamer front being driven out of gaseous argon
across the interface into liquid argon. The Chapter presented a method to account for
large density variation from gas to liquid phase by assuming both a realistic density
profile and step-function variation of n0 in order to implement approximation rules for
density dependent input transport data between gas and liquid extremes. Furthermore,
this work has accommodated interfacial effects of the spatial variation of both the
dielectric constant, εr, through solution of Poisson’s equation, and binding energy of
an electron in liquid, V0, through an effective applied electric field.

Using the proposed methods to compare local (LFA) and non-local transport
(4MM) models and their sensitivities, the key recommendation of this Chapter, to best
describe electron transport between gas and liquid densities, is to adopt a mean energy
dependent higher order fluid model, such as the 4MM method used in this study. This
model demonstrated greater flexibility and reliability in resolving non-local physics and
interfacial electron transport compared to the local field drift-diffusion model. It was
demonstrated that a drift-diffusion continuity equation (LFA) model required careful
treatment of input data between gas and liquid extremes by way of approximating field
dependent input data for intermediate densities using a tanh function, whereas the
non-local 4MM model was relatively insensitive to the functional form of n0 variation.

In summary, this work has presented the findings of a preliminary modeling study
of electron transport across cryogenic argon gas-liquid interfaces. This Chapter demon-
strated the importance of modifying gaseous electron transport models to account for
interfacial and liquid effects when considering transport at the gas-liquid interface. A
key result of this study is that vastly different electron transport is produced if gas
phase input data is simply scaled to liquid densities, compared to using accurate liquid
phase data. While this study has focused on a simple atomic liquid-gas system, it
is hoped that this work will stimulate further modeling and experimental efforts to
benchmark and refine the work presented. By expanding on the work of this study,
extensions to complex interfacial systems, like those found in plasma medicine, can
eventually be made to better understand important plasma applications. Further phys-
ical processes that should be considered in interfacial modeling may include electron
solvation processes in polar liquids [140,184], and condensed phase evaporation [180].

With this Chapter having demonstrated that the proposed modeling framework
can be applied to electron transport at a relatively simple argon gas-liquid interface,
the final Chapter of this thesis will now seek to extend the modeling approach to a
biologically relevant medium, tetrahydrofuran (THF). Assembly of a complete cross
section set for electron-THF interactions will be discussed, and calculated electron
transport data for gaseous THF will be presented. Application of vital liquid phase
modifications, such as coherent scattering and modification of the ionisation potential,
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will be demonstrated in the final Chapter to modify the assembled gas phase electron
transport data for THF to simulate streamer formation and propagation in liquid THF.

Chapter Appendix: Input data at densities intermedi-

ate to the gas and liquid phases

In order to accommodate n0 (z) variation of input data, this Chapter has implemented
an approximation method recently proposed, and benchmarked for simple atomic liquids,
by Garland et al. [3] that seeks to approximate input transport data and collision rates
as weighted combinations of the gas and liquid extreme values. This process is analogous
to Blanc’s Law [157], or the energy-dependent approach proposed by Chiflikian [159],
used for approximating transport data in gas mixtures, where instead one now seeks
to describe transport at intermediate densities between two density extremes of one
substance instead of mixing two distinct gases. Where necessary to account for the
differences in momentum transfer for gas and liquid systems, non-linear weightings of
gas and liquid extreme data are combined [3]. Using a zeroth order momentum transfer
theory (MTT) approximation [3,76,161], the non-linear dependence is extracted via
the angle-integrated structure factor evaluated at a given electron mean energy, 〈ε〉,
and at a neutral atom density

s(〈ε〉 , n0) =
1

2

∫ π

0
S

(
2

~
√
2me 〈ε〉 sin χ

2
, n0

)
[1− cosχ] dχ, (4.18)

where, for this work, the static structure factor, S
(
2
~
√
2me 〈ε〉 sin χ

2 , n0

)
, is assumed

to be the analytic Verlet-Weis corrected Percus-Yevick structure factor [83] which has
been demonstrated to be a good approximation of atomic liquid structure [12,15,57,65].
The full analytic expression is included in a preceding study [3]. When considering
largely localized energy transfer due to inelastic excitations, one may use simpler linear
combinations of gas and liquid extrema data as this was demonstrated to provide a
sufficient first-order approximation to the intermediate density’s transport data because
explicit modifications to the energy balance equation (4.9) aren’t required [3, 48].

Local field dependent input data

For the LFA model the drift velocity at intermediate densities, Wint, is approximated
as function of reduced field, E

n0
. A weighted sum of reciprocals of gas, Wg, and liquid ,

Wl, extreme values was used

1

Wint

(
E
n0

) = xgsint

(
E

n0

)
1

Wg

(
E
n0

) + xl
sint

(
E
n0

)
sl

(
E
n0

) 1

Wl

(
E
n0

) , (4.19)
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where the density fractions, xg,l, follow the relation

xl = 1− xg. (4.20)

These density fractions are determined by defining the intermediate density, nint,
as a sum of fractions of either density extrema

nint = xgn
eq
g + xln

eq
l , (4.21)

and by combining (4.20) and (4.20) one finds

xg =
neq
l − nint

neq
l − neq

g
. (4.22)

The approximated angle-integrated structure factor at any intermediate points is given
by

sint ≈ wsg + (1− w) sl, (4.23)

where sg is defined as unity for the gas, sl for the liquid extreme is evaluated via (4.18),
and to ensure the approximation is physically grounded in both the high and low energy
limits, the weighting factor, w, is fixed in the low energy limit by

w =
Sint(0, nint)− Sl(0, nl)

Sg(0, ng)− Sl(0, nl)
, (4.24)

where S (0, n) is the ∆k → 0 limit of the analytic structure factor [83], or otherwise
proportional to the fluid compressibility which is a measurable input.

Using (4.19) in conjunction with the accurate data of gas and liquid extremes
described in Section 4.2.2, effectively generates a drift velocity surface, shown in Figure
4.21, which can be used to interpolate onto as a function of the instantaneous E

n0
and

n0 given at each point in space during the simulation.
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Figure 4.21: Drift velocity surface of electrons in argon as a function of E
n0

and n0 used
to interpolate input data for LFA models.

The reduced longitudinal diffusion coefficient n0DL was computed via a generalized
Einstein relation (GER) [185] once the drift velocity was known via (4.19).

Dint
L

µint
=

kBT0
q

(
1 + (1 + ∆int)

∂ lnµint
∂ lnE

)
, (4.25)

where µint =
Wint
E

is the electron mobility derived from the drift velocity (4.19), T0 is
the neutral atom temperature, and the correction factor [185]

∆int =
ξint

2kBT0Wint
, (4.26)

where ξint is the electron heat flux which can be approximated via a similar rule as
used for Wint via non-linear combinations of gas, ξg, and liquid, ξl, extreme values

1

ξint

(
E
n0

) = xgsint

(
E

n0

)
1

ξg

(
E
n0

) + xl
sint

(
E
n0

)
sl

(
E
n0

) 1

ξl

(
E
n0

) . (4.27)

The resulting surface of n0DL generated via (4.25) is shown in Figure 4.22 for the
range of densities and reduced field values used in this study.
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Figure 4.22: Reduced longitudinal diffusion coefficient, n0DL, surface of electrons in
argon computed via the GER (4.25) as a function of E

n0
and n0 used to interpolate

input data for LFA models.

The final input parameter for the LFA model is the ionisation collision rate which,
for densities between the gas and liquid extremes νint

I , was approximated in this study
by a simple linear weighted sum of gas, νgI , and liquid, νlI , extreme ionisation rates

νint
I

(
E

n0

)
= xgν

g
I

(
E

n0

)
+ xlν

l
I

(
E

n0

)
. (4.28)

The reduced ionisation collision rate surface generated via (4.28) is shown in Figure
4.23 for the range of densities and reduced field values used in this study.
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Figure 4.23: Reduced ionisation collision rate, νI/n0, surface of electrons in argon
computed via (4.28) as a function of E

n0
and n0 used to interpolate input data for LFA

models.

Higher order model input data

The 4MM model collision data can be approximated between gas and liquid densities
with energy dependent approximation methods [3]. As was done for the drift velocity,
non-linear weights taken from the angle-integrated structure factor are used to generate
a sum rule using gas, ν̌gm, and liquid, ν̌lm, data to yield a reduced momentum transfer
collision frequency at intermediate densities, ν̌int

m , evaluated at a common mean energy,
〈ε〉,

ν̌int
m (〈ε〉) = xgsint(〈ε〉) ν̌gm(〈ε〉) + xl

sint(〈ε〉)
sl(〈ε〉)

ν̌lm(〈ε〉) , (4.29)

where ν̌ notation is used to denote a reduced collision rate scaled by n0. The same
formulation can be applied to approximate the input collision rate for the energy flux
balance equation - the energy flux transfer collision rate, ν̌int

ξ , using gas, ν̌gξ , and liquid,
ν̌lξ, quantities

ν̌int
ξ (〈ε〉) = xgsint(〈ε〉) ν̌gξ (〈ε〉) + xl

sint(〈ε〉)
sl(〈ε〉)

ν̌lξ(〈ε〉) . (4.30)

To demonstrate the application of the non-linear sum rules the reduced momentum
transfer collision frequency surface generated via (4.29) is included in Figure 4.24,
demonstrating the reduction in momentum transfer collisions as the argon density
increases.
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Figure 4.24: Reduced momentum transfer collision frequency, νm
n0

, surface of electrons
in argon computed via (4.29) as a function of 〈ε〉 and n0 used to interpolate input data
for the 4MM model.

The input collision parameter for the energy balance equation (4.9) is a lumped
energy loss rate, Sε, which describes the total loss of energy per second due to all
collision processes. As modifications for non-linear liquid effects manifest through
explicit modification of vector quantity balance equations, and not the mean energy
balance equation [3, 48], this work has instead used a simpler linear combinations of
gas, Šgε , aIn order accnd liquid, Šlε, lumped energy loss rates to yield the loss rate for
an intermediate density, Šint

ε ,

Šint
ε (〈ε〉) = xgŠ

g
ε (〈ε〉) + xlŠ

l
ε(〈ε〉) . (4.31)

The application of this lumped energy loss rate sum rule is demonstrated in Figure
4.25 where the surface plot shows the variation with neutral density and electron mean
energy.
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Figure 4.25: Reduced lumped energy transfer rate, Sε
n0

, surface of electrons in argon
computed via (4.31) as a function of 〈ε〉 and n0 used to interpolate input data for the
4MM model.

As per the linear sum approximation of gas and liquid input data for Šε (4.31), the
intermediate variation of the reduced ionisation collision rate, ν̌int

I , was approximated
via

ν̌int
I (〈ε〉) = xgν̌

g
I (〈ε〉) + xlν̌

l
I(〈ε〉) , (4.32)

and the resulting surface plot is shown in Figure 4.26. As expected from (4.12), contours
shown in Figure 4.26 demonstrate the decreasing ionisation threshold energy as n0
increases due to the variation in V0 with n0 [175].
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Figure 4.26: Reduced ionisation collision frequency, νI
n0

, surface of electrons in argon
computed via (4.32) as a function of 〈ε〉 and n0 used to interpolate input data for the
4MM model.
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5
Scattering, transport, and simulation

of electron transport in THF

This chapter contains material that has been published in the following journal article:
[1] NA Garland, MJ Brunger, G Garcia, J de Urquijo, and RD White. Transport

properties of electron swarms in tetrahydrofuran under the influence of an applied
electric field. Physical Review A, 88 062712 (2013). Available online at doi:10.1103/Phys-
RevA.88.062712

This chapter includes results and figures from multi-term solutions of the Boltzmann
equation performed by RD White using data assembled during this research. Listed co-
authors provided advice and feedback on the featured data and analysis. Experimental
measurements and considerations were contributed by J de Urquijo. Transport data
used as input for ionisation front simulations in Chapter 5 was provided by MJE Casey.

5.1 Chapter Introduction

Quantitative modeling of electron transport in biological matter requires the compilation
of the best available set of cross sections for all collisional processes (e.g. elastic,
rotations, vibrations, ...). As outlined in Chapter 1, tetrahydrofuran (THF) has been
identified as a suitable biomolecule to study. Deeper knowledge of electron transport in
THF will facilitate modeling of complex charged particle transport in tissue surrogates
to better understand emerging plasma medicine technologies. The agreement between
available experimental and calculated cross sections for some scattering processes is
adequate for elastic and ionisation collisions, while for other processes, such as neutral
dissociated, dissociative electron attachment (DEA), and vibration, electronic, and
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rotational excitations, definitive agreement is elusive. To facilitate electron transport
simulations in gaseous, liquid, or interfacial THF the necessary transport coefficients
and collision data will be calculated from a complete cross section set, formed by
studying and assessing the available experimental and calculated cross section data.
Using gas phase transport data, along with corrections to account for transport in
soft-condensed structured matter, electron transport is simulated using the modeling
framework developed in this study. From this modeling, demonstration of formation
and propagation of ionisation fronts in both gaseous and structured THF is presented
and discussed.

Section 5.2 presents a survey of existing total, integral and differential cross sections
in THF, and propose an almost complete set of electron impact cross sections for THF
including elastic, rotational, vibrational, electronic, ionisation and neutral dissociation
processes in the energy range 0-300 eV. Section 5.3 then discusses issues that were found
in attempts to measure swarm transport coefficients in THF, and presents calculated
transport coefficients using a Boltzmann equation treatment aimed to motivate further
experimental swarm studies in THF. Section 5.5 will employ the modeling framework
developed in this research project, along with the most recently available gaseous and
structured THF data, to model the formation and propagation of ionisation fronts.
Finally, in Section 5.6 some conclusions from the present investigation are drawn.

5.2 cross sections in THF

This Section presents the development of a recommended set of cross sections for
electrons in THF. This work is restricted to the energy region less than 300 eV. Above
this energy, agreement between theory and experiment is sufficiently good that theory
can in general be used [19, 21]. This Chapter will focus on the development of a set
of cross sections for implementation into a Boltzmann equation transport theory (or
Monte-Carlo simulations), and hence is restricted to discussions of the integral cross
sections (ICS), while the differential cross sections are sufficiently represented through
implementation of the integrated forms including the momentum transfer cross sections
(MTCS).

5.2.1 Grand total cross section set

The grand total cross section (GTCS) for THF mainly consists of contributions from
the elastic σelas, rotational σrot, vibrational σvib, electronic σelec, ionisation σion and
neutral dissociation σneutral integral cross sections. The GTCS has been extensively
studied both experimentally [18,20] and computationally [19,21]. This work proposes a
GTCS based on the most recent set of Chiari et al. [21], although modified by the Chiari
et al. data to account for the resonance at approximately 6 eV that has been observed
in the previous experimental measurements [18, 20]. To construct the resonance in
the proposed set, the slopes either side of the measured resonances in the GTCS from
references [18,20] were computed and found to be similar. This characteristic of the
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resonance from both data sets was subsequently used to splice in the known resonance
into the Chiari et al. data set. The resulting proposed GTCS for electrons in THF
is presented in Figure 5.1, where they are compared with other experimental and
theoretical data.
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Figure 5.1: Proposed grand total cross section for electron scattering in THF, as
compared with existing GTCS data (Mozejko et al. [18]; Fuss et al. [19]; Zecca et
al. [20]; Chiari et al. [21]; Baek et al. [22]).

5.2.2 Elastic cross section set

There have been a number of measurements of the elastic differential and integral cross
sections for a variety of energy and angular ranges [22, 24, 25, 27, 133]. These have
been complemented by theoretical calculations using the R-matrix [136], Schwinger
variational method [137] (more recently accounting for the long range scattering by
the strong permanent electric dipole of THF [25]), and the independent atom model
(IAM-SCAR) [19,21,23]. Multiple elastic ICS were sourced from Fuss et al. [19], Colyer
et al. [24] and Gauf et al. [25], in order to construct the proposed elastic ICS by
capturing the relative strengths of the various approaches. For energies higher than 50
eV, there is relatively good agreement between results from the various techniques and
so the theoretical elastic ICS from Fuss et al. [19] was used. For energies less than 50
eV, however, the elastic ICS was spliced into a mixture of data from Colyer et al. [24]
and Gauf et al. [25]. Specifically, the Colyer et al. data were used in the range 10-50
eV, while the ratio of the Colyer et al. and Gauf et al. data points at 10 eV were used
to scale down the Gauf et al. data points for the sub-10 eV energies down to 1 eV.
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Finally, for energies less than 1 eV (to 0.1 eV), the set has extrapolated the proposed
elastic ICS as shown in Figure 5.2. In summary, the proposed elastic ICS is compared
with the data used to construct it [19, 24, 25] in Figure 5.2. An equivalent process was
also employed to establish the elastic momentum transfer cross section displayed in
Figure 5.3.
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Figure 5.2: Proposed elastic ICS for electron scattering in THF, compared with existing
data from which the set was constructed (Fuss et al. [19, 23]; Colyer et al. [24]; Gauf et
al. [25]; Baek et al. [22]; Dampc et al. [26]).

5.2.3 Vibrational excitation and ionisation cross section sets

Electron impact vibrational excitation cross sections for scattering in THF have been
measured by various groups [27, 28, 134]. This work proposes a set of six ICSs for
the identified vibrational modes of THF in the work from Allan [27]. In general, if
the angular distribution of a DCS is isotropic at some incident electron energy ε,
then for any scattering angle θ = θ0 the integral cross section is simply given by
ICS(ε) = 4πDCS(ε, θ0). The DCS of Khakoo et al. [28] suggest that, with the exception
of their lowest energy work at 2 eV, the assumption of isotropic angular distributions
for the DCS is quite adequate. Nonetheless, in an attempt to lessen the effects of
any anisotropic scattering, there has been an averaging of the measured vibrational
excitation functions of Allan [27], for each respective mode, at θ = 45◦, 90◦, 135◦ and
180◦, before multiplying by 4π to generate an ICS(ε) in each case.

The results from the analysis are displayed in Figure 5.4. For comparison, Figure
5.5 plots the vibrational cross section of Khakoo et al. [28], whose measurements
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Figure 5.3: Proposed elastic momentum transfer cross section for electron scattering
in THF, compared with existing data from which the set was constructed (Gauf [25];
Colyer [24]; Baek et al. [22]; Dampc et al. [26]).

were conducted at a lower energy resolution and therefore incorporate several of the
individual modes measured by Allan [27], with the relevant summed modes proposed in
Figure 5.4. One sees in Figure 5, to within the stated uncertainties from the analysis
and the measurements of Khakoo et al., that the level of agreement between them is
generally quite good, with the proposed ICS being systematically smaller in magnitude.
Nonetheless, the results embodied in Figure 5.5 gives some confidence in the validity of
the current approach in determining the THF vibrational ICSs.

For implementation into transport theories, and or Monte-Carlo simulations, it is
important to have differentiated (rather than lumped) processes, where possible, to
ensure that the relevant threshold energies are included in the transport results [128].
This is the main reason this work prefers using the data of Allan [27] to that in Khakoo
et al. [28].

There have been limited investigations of electron impact ionisation in THF. Here
one should note the theoretical studies from Mozejko and Sanche [29] and Dampc et
al. [30], and the experimental study of Fuss et al. [23]. This investigation implements
the measured ionisation ICS of Fuss et al. [23]. As the data of Fuss et al. only extend
down to 50 eV, the proposed set has used a linear extrapolation to extend their ICS to
a value of 0 Å2 at the 11.72 eV ionisation threshold for THF. The proposed ionisation
ICS is compared with the available theoretical calculations and the results of Fuss et al.
in Figure 5.6.
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Figure 5.4: Proposed vibrational ICS for electron scattering in THF. See legend for
further details.

5.2.4 Electronic-state excitation cross section sets

Investigations of electronic-state excitation of THF are restricted to the experimental
studies of Do et al. [31] and Zubek et al. [135]. The first three Rydberg bands of integral
cross sections for electronic excitation (σ(1)elec, σ(2)elec, σ(3)elec) have been reported by Do et
al. [31]. cross sections for the three higher level bands of electronic excitations, which
are apparent in the energy-loss spectra in Do et al. and converge to the ionisation
threshold of THF, are not available, although the threshold energies for the processes
are known [31]. The remaining three electronic mode ICS (σ(4)elec, σ(5)elec, σ(6)elec) were
assumed to have the same functional form as σ(3)elec. Their magnitudes were estimated
by adding respectively 10%, 20%, and 30% of the maximum value of σ(3)elec to the cross
section σ

(3)

elec. It should be noted that these scaling factors are not random; they were
estimated on the basis of the energy-loss spectra in Do et al. [31] and the many other
energy-loss data measured by the Flinders group. While they do represent, in this use,
a form of average scaling factor, they are believed to be accurate to within the typical
uncertainties of experimental electronic-state ICS determination (45%-50%).

These cross sections (σ(4)elec, σ(5)elec, σ(6)elec) were also shifted to their relevant thresholds
for each of the electronic excitation processes. The proposed set of electronic-state
excitation ICSs are displayed in Figure 5.7.
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Figure 5.5: Comparison of a subset of the recommended ICS for electron induced
vibrational processes in THF [27], with the summed modes of Khakoo et al. [28].

5.2.5 Unknown cross sections: rotations and neutral dissociation

To estimate the unknown remnant ICS for electron collisions with THF, the known/pro-
posed cross sections (elastic, vibrational, electronic excitation and ionisation) were
subtracted from the grand total cross section set proposed in Figure 5.1. The remaining
cross section, after subtraction, was assumed to be composed of the sum of rotational
excitation ICS and the neutral dissociation ICS. Electron attachment and dissociative
electron attachment (DEA) are of course other possible channels to consider. At the
time of this investigation, no absolute ICS for DEA or attachment of electrons in THF
are currently available, and so they have not been considered in this immediate study.

In order to isolate the contribution of neutral dissociation from the rotational
processes, it was assumed that the neutral dissociation cross section would display
similar attributes to the equivalent cross section in other targets [186–189]: namely a
relatively low-energy threshold and being quite sharply peaked over quite a small energy
domain. This naturally emerged from the remnant cross section, and the proposed
neutral dissociation cross section is displayed in Figure 5.8, with a threshold energy
of 5.98 eV and being sharply peaked at around 10 eV. This is compared with the
neutral cross section proposed by Fuss et al. [19]. Their cross section is broader but of
approximately the same magnitude as that proposed. However, the ICS of Fuss et al.
has a somewhat larger threshold energy and energy range.

The remainder of the remnant cross section was assumed to be the contribution
due to (lumped) rotational excitations and is shown in Figure 5.9. This investigation
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Figure 5.6: Comparison of the proposed ionisation cross sections for electron scattering
in THF with the available theoretical calculations of Mozejko and Sanche [29] and
Dampc et al. [30], and the measured data from Fuss et al. [23].

was unable to extract the individual rotational cross sections. Calculations indicate
that the lowest threshold for rotational excitation is less than 1 meV, and with an
average excitation threshold of 1.205 meV. In the proposed set, it was assumed rotational
processes can be characterised by a single (lumped) rotational integral cross section with
representative threshold energy of 1.205 meV. The present derived results are compared
with the corresponding results given in Fuss et al. [19], using the IAM-SCAR approach,
and with a revised set calculated using the Born-dipole rotational excitations [21]. The
extracted rotational cross sections are in good agreement with the results presented in
Chiari et al. [21], as seen in Figure 5.9.

5.3 Transport properties of electrons in gaseous THF

To model macroscopic systems, one needs complete and accurate cross section sets. One
of the key discriminative tests on the accuracy and completeness of cross section sets
is made through comparison of results from swarm experiments [121,190]. Electrons
are released into a drift tube containing the gas and experience a spatially uniform
electric field (E). Completeness and accuracy of the cross section set is investigated by
correspondence of the measured transport coefficients with those calculated or simulated
using that cross section set. These transport coefficients include the drift velocity W ,
transverse and longitudinal diffusion coefficients DT and DL respectively, and the rate
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Figure 5.7: Proposed electronic excitation ICS for electron scattering from THF, as
determined using the data of Do et al. [31].

coefficients for a range of applied reduced fields E/n0. It should be noted that n0 is
neutral gas density. This Section implements the above set of proposed cross sections,
to study the macroscopic transport properties of electron swarms in THF under typical
swarm conditions [121,190]. Analysis starts with a brief description of what transport
coefficients are measured, and how one relates them to the microscopic cross sections
through an appropriate transport theory.

5.3.1 Swarm transport coefficients

Experimental swarm investigations of transport behaviour are generally made by
sampling charged particle currents or densities n(r, t). The connection between experi-
ment and theory is generally made through the equation of continuity

∂n(r, t)

∂t
+∇ · Γ(r, t) = S(r, t) , (5.1)

where Γ(r, t) = n < v > is the electron flux and S(r, t) represents the production rate
per unit volume per unit time arising from non-conservative collisional processes, such
as ionisation. In the hydrodynamic regime, the space-time dependence is projected onto
functionals of the number density through a density gradient relation [132], and so the
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Figure 5.8: Proposed neutral dissociation ICS for THF, as compared with the earlier
estimation of Fuss et al. [19].

flux Γ(r, t) and source term S(r, t) in equation (5.1) are expanded as follows:

Γ(r, t) = WFn(r, t)− DF · ∇n(r, t) + ... (5.2)

S(r, t) = S(0) − S(1) �∇n(r, t) + S(2) �∇∇n(r, t) + ... , (5.3)

where WF is the flux drift velocity and DF is the flux diffusion tensor. These are
often reported in the pulsed Townsend experiment configuration [73]. Substitution
of expansions (5.2) and (5.3) into the continuity equation (5.1) yields the diffusion
equation

∂n

∂t
+W · ∇n− D : ∇∇n+ ... = −RIn , (5.4)

where Ri = S(0) is the loss-rate and bulk transport coefficients are defined as

W = WF + S(1) (5.5)

D = DF + S(2). (5.6)

Swarm experiments, such as the time of flight approach, are generally analysed on
the basis of the diffusion equation and hence the bulk coefficients, not the flux, are
determined in those swarm experiments [96].
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Figure 5.9: Proposed rotational ICS for electron scattering from THF, as compared
with the estimation of Fuss et al. [19] and the calculated result of Chiari et al. [21].

5.3.2 Boltzmann equation and its solution

The connection between the macroscopic transport properties discussed above, and
the microscopic processes governed by the cross section set proposed, is made through
kinetic theory. Importantly, in swarm experiments, electric fields drive the electrons
out of equilibrium with the background gas and hence the distribution of velocities of
the electrons often becomes distinctly non-Maxwellian. In this case, the macro-micro
connection must be made through a solution of Boltzmann’s equation (or equivalently a
Monte-Carlo simulation). The motion of a dilute swarm of electrons (mass m) moving
through a background of dense neutral THF molecules in the presence of an applied
electric field E can be described by the linear Boltzmann equation

∂f

∂t
+ v · ∇f +

qE

m
· ∂f
∂v

= −J(f, f0) , (5.7)

where f(r,v, t) is the single-particle phase space distribution function, which is a
function of position r, velocity v and time t. The acceleration on an electron of mass
m is due to the external homogeneous electric field E. The collision operator J(f, f0)
takes into account binary interactions between the electrons and the THF molecules,
where f0 denotes the THF molecule distribution function, which is assumed to be
Maxwellian at the gas temperature T0. The details of the collision operator used can
be found in Ness et al. [142].

Equation (5.7) is an integro-differential equation for f(r,v, t), a knowledge of
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which permits determination of all quantities of interest describing the behaviour of
the electron swarm. In the hydrodynamic regime in which swarm experiments are
conducted, the space-time dependence of f is assumed to have the form

f(r,v, t) =
∑
j=0

f (j)(v) · (−∇)j n(r, t) , (5.8)

where the f (j) are tensors of rank j, the dot denotes a j-fold scalar product and the
local charged particle density at time t is given by:

n(r, t) =

∫
f(r,v, t)dv . (5.9)

Substitution of the hydrodynamic expansion (5.8) into equation (5.7), and equating
coefficients of the gradient expansion, results in a hierarchy of equations to solve for
the velocity distribution functions f (j)(v) [191]:

qE

m
· ∂f

(j)

∂v
+ J(f (j), f0) = vf (j−1) j = 0, 1, ... (5.10)

This is the microscopic picture. Solution of the hierarchy for the distribution functions
f (j)(v) enables calculation of the macroscopic measurable quantities through appropriate
averages e.g.

WF =
1

n

∫
vf (0)(v, t)dv , (5.11)

DF = − 1

n

∫
vf (1)(v, t)dv , (5.12)

S(i) =
1

n

∫
JR(f

(i), F0)dv (5.13)

Solution of the hierarchy of kinetic equations (5.10) requires decomposition of f (j)(v)
in velocity space. The first step in any analysis is typically the representation of the
distribution function in terms of the directions of velocity space through an expansion
in spherical harmonics [70]:

f (j)(v, t) =

∞∑
l=0

l∑
m=−l

f j(l)m (v, t)Y [l]
m (v̂) , (5.14)

where Y
[l]
m (v̂) are the spherical harmonics and v̂ denotes the angles of v. While

common practice is to set the upper bound of the l-summation to 1 (i.e., the two-term
approximation) and consider only m = 0 (i.e., a Legendre polynomial expansion),
this formulation does not make any such restrictive assumptions in this theory. In
best practice, the integer lmax is successively incremented until a prescribed accuracy
criterion is met, as considered below. This is a multi-term solution of Boltzmann’s
equation. Combining equations (5.7) and (5.14) leads to the following hierarchy of
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coupled integro-differential equations for f j(l)m :

∑
l′m′

〈lm
∣∣∣∣eEm · ∂

∂v
+ J

∣∣∣∣ l′m′〉 f j(l
′)

m′ = −
∑
l′m′

〈lm |v| l′m′〉 f j−1(l′)
m′ . (5.15)

Expressions for the matrix elements of the streaming operators are given in Robson
et al. and Ness et al. [70, 142]. The collision matrices e.g. 〈lm |J | l′m′〉 = [J lelas +

J linel ++J la + J lion]δl′,l δm′,m are all diagonal in l and m, since the collision operators
are all scalars. Further representation of the speed dependence is required to solve
the hierarchy of coupled operator equations. This study implemented an expansion in
terms of Sonine polynomials, and the reader is referred to White et al. [132] for further
details on relating transport coefficients to the coefficients f j(l)m .

5.3.3 Electron transport in THF

Figures 5.10 - 5.12 present results for swarm transport properties of electrons in THF,
including the mean energy, drift velocity, diffusion and rate coefficients. The results
presented are in a quasi-steady state determined by a balance between power input
from an applied electric field E and energy loss rate via collisions between electrons in
the swarm and particles. All results are presented as a function of the reduced electric
field E/n0, in the range 0.01 - 10000 Td (1Td = 1 Townsend = 10−21 Vm2). The
temperature of the background gas of THF molecules is fixed at 293 K.

In the low field regime (E/n0 < 1 Td), the electron swarm is essentially in thermal
equilibrium with background THF molecules. As shown in Figure 5.10 the mean energy
is approximately equal to the background temperature and the field is a perturbation on
the swarm’s behaviour. In this regime, the drift velocity (see Figure 5.11) is essentially
linear representing an essentially constant mobility. Likewise, as displayed in Figure
5.12 the diffusion is approximately equal to the thermal value and it is essentially
isotropic (DL ≈ DT ). All collision processes are essentially conservative as highlighted
in the ionisation rate in Figure 5.10, and hence there are no differences between the
bulk and flux coefficients in this regime.

When considering higher fields (1 Td < E/n0 < 100 Td), the thermal equilibrium
state is finally broken. The rapidly falling cross section magnitudes for elastic collisions
results in a rapidly increasing mean energy with field in this regime as demonstrated in
Figure 5.10. This rapid rise in the mean energy is then quenched by the quite large
neutral dissociation cross section and the ionisation cross sections shown in Figures 5.6
and 5.8, which sees a plateauing of the mean energy above ~100Td (see Figure 5.10).
This behaviour is also reflected in the diffusion coefficients presented in Figure 5.12.
While the diffusion coefficients have a thermal contribution to them, in this regime,
one observes that diffusion becomes distinctly anisotropic (i.e. diffusion parallel and
transverse to the electric field are distinctly different). As the thermal contribution to
diffusion is relatively isotropic in this regime, this indicates that the primary source
of anisotropic diffusion comes from the “differential velocity effect” [160] arising from
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a rapidly varying collision frequency with energy and spatial variation of the average
energy through the swarm.

In the high field regime (E/n0 > 100 Td), non-conservative effects associated with
ionisation (see Figure 5.10) begin to impact on the transport properties. For the mean
energy, the ionisation process generates another electron with lower energy, resulting in
a dilution of the energy and a reduced rate of increase with reduced field in the mean
energy of the swarm. Importantly, there are explicit effects on the transport coefficients.
Figure 5.11 displays both the flux and bulk drift velocities. The flux represents the
velocity averaged over all electrons in the swarm, while the bulk drift velocity represents
the time rate of change of the center of mass of the electron swarm. Non-conservative
processes have an implicit effect on the velocity distribution function and hence on the
flux drift velocity. In particular the non-conservative processes explicitly modify the
center of mass of the swarm through non-uniform creation of electrons, and consequently
modify the bulk drift velocity. In Figure 5.11, one may observe that the bulk drift
velocity is enhanced over the flux component, indicating that electrons are getting
preferentially created at the front of the swarm and so shifting the center of mass in
the direction of the field force.

Lastly this analysis makes comment on the validity of the two-term approximation
for describing electron transport in THF. In Figure 5.13 a comparison of the two-term
and multi-term approximations for the diffusion coefficients is shown. For low-fields,
the two-term approximation is accurate to within 1% or better. As one moves to higher
fields however, it is observed that the two-term approximation can be in error by as
much as 25%. This is indicative of a highly anisotropic velocity distribution function.
At high field, this anisotropy is evidenced by temperatures transverse and parallel to
the electric field differing by 10% or more. Analysis of swarm experiments at high fields
will necessarily require a multi-term analysis or Monte-Carlo simulation.
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Figure 5.10: Mean energy and ionisation rate for electrons in THF as a function of the
reduced electric field.
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Figure 5.11: Bulk (dashed) and flux (solid) drift velocities for electrons in THF as a
function of the reduced electric field. The inset uses a linear scale to emphasize the
differences.
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Figure 5.12: Reduced transverse and longitudinal flux diffusion coefficients for electrons
in THF as a function of the reduced electric field.

10 100 1000 10000
-100

-80

-60

-40

-20

0

20

40

60

80

100

 n0DT (multi-term to two-term)
 n0DL (multi-term to two-term)

Fr
ac

tio
na

l D
iff

er
en

ce

E/n0 (Td)

Figure 5.13: Two-term and multi-term approximations for the reduced flux transverse
and longitudinal diffusion coefficients for electrons in THF as a function of the reduced
electric field.
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5.3.4 Swarm experiment considerations in THF using the pulsed-Townsend

technique

Several attempts were made to measure electron swarm coefficients (electron drift velo-
city, longitudinal diffusion coefficient and effective ionisation coefficient) in THF using
the pulsed Townsend technique [168,192]. At the time of performing the experiments,
attempts to measure electron avalanches in pure THF were unsuccessful because of a
hitherto unobserved phenomenon. Since then, recent enhanced experimental methods
have been developed to facilitate further refinement of the electron-THF cross section
set [193].

THF vapour was injected into the evacuated discharge chamber to pressures close
to 2× 10−6 Torr. It was observed that the measured drift velocities did not reproduce
for fixed E/n0 and pressure. Large variations of up to 30% were observed in the meas-
urement of the electron drift velocity W , which are far beyond common uncertainties
of ±1-2% in this coefficient. These measurements were followed with tests of drift
velocities in pure N2, for which the electron swarm coefficients are well known. These
results were in error. The vacuum vessel, electrode system and all contacts and surfaces
were all cleaned and washed to remove the layer of THF adhered to it. The system was
retested with pure nitrogen, this time rendering values of W which were within ±1-2%
of the accepted values. Thus it became clear that an effect due to the THF vapour
in the discharge chamber was the cause of the noted failure. It is hypothesised that a
thin dielectric layer of THF forms on the cathode and anode surfaces, these becoming
charged, thereby producing an additional electric field which affects the external one,
and so changes the E/n0 value across the discharge gap.

A second series of measurements in THF were performed after several months of
successful measurements with other gases such as water vapour, He, N2 and Ar. Initial
measurements of W in 1% THF in N2, over a range of applied reduced fields 5-45 Td,
were found to be quite close to the pure N2 values. Subsequent measurements carried
out 12 hours later rendered W values much higher than those measured previously.
Drift velocity measurements in pure THF in fact produced such high values that they
were difficult to understand.

A new discharge chamber has been built to measure electron swarm coefficients at
higher (25-1200C) and lower (down to -200C) temperatures. A plan was established
by experimental members of the study to try and measure these coefficients at higher
temperatures, to avoid the formation of dielectric layers on the electrodes. Furthermore,
it is anticipated that measurements in low concentrations of THF mixtures with N2 or
Ar, for instance, will be most feasible and avoid constant cleaning of the apparatus.

5.4 Modifications for transport in liquid THF

So far, this Chapter has been devoted to assembling a complete set of electron scattering
cross sections for electron transport in gaseous THF, to enable electron transport data
to be computed as input to the modeling framework presented in Chapters 2, 3, and
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4. Using what has been proposed for electron transport in gaseous THF, this Section
proposes modifications to the gas phase cross section set as a way to capture some of the
modifications that occur at high liquid densities. Similar to the prescription detailed
for liquid argon in Chapter 4, this Section applies modifications using an experimental
static structure factor for liquid THF [32], a lower ionisation threshold energy [194],
and a reduced number of inelastic excitation cross sections as a result of the modified
ionisation energy. Modification of the electron-neutral interaction potential is not
considered in this study, as the methodology for non-polar, simple atomic liquids [12,15]
requires extension for polar liquids.

Using neutron diffraction techniques Bowron et al. [32] measured correlation func-
tions of liquid THF structure at 298 K in ambient conditions. The static structure
obtained from the measured correlation functions was digitised and is shown in Fig-
ure 5.14. To emphasise the fact that experimental data, such as that of Bowron et
al. [32], is important for modeling complex molecular liquids, as opposed to relatively
simple treatments used for atomic liquids, comparison to an analytic structure factor
of Percus-Yevick [83] has been made. The analytic structure factor was computed
using an estimated van der Waals radius for THF of 2.596 Å [195] with a known liquid
density of n0 = 7.4× 1027 m−3, corresponding to a packing fraction of φ ≈ 0.55, and is
included in Figure 5.14.
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Figure 5.14: Static structure factor of liquid THF at atmospheric conditions measured
by Bowron et al. [32] compared to an analytic structure factor computed via (3.18)
assuming an ideal atomic liquid. The ideal gas value of S(∆k) = 1 is plotted as a
reference.

Clearly the structure factor of liquid THF is not at all like that of a simple analytic
form for an ideal atomic liquid and reaffirms the importance of accurate liquid phase
input data to the electron modeling framework proposed in this study. The experimental
structure factor was used to modify the total momentum transfer cross section for
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electron scattering in THF [48] in an attempt to capture the effects of coherent elastic
scattering that occurs with low electron energies and high liquid densities.

In the previous Chapter, a modification was presented for the ionisation threshold
energy of liquid argon to account for changes to the electron polarisation potential,
P+, and the delocalised electron energy level, V0, that occurs as argon is condensed.
As knowledge of V0 for electrons in liquid THF is currently limited, modification of
the ionisation threshold energy was performed by lowering the threshold energy by a
known polarisation potential of approximately 1.8 eV. This modification results in a
lower ionisation potential of 7.75 eV from the gas phase value of 9.55 eV.

As per the modifications for liquid argon in the previous Chapter, any inelastic
excitation processes with a threshold energy greater than the new liquid ionisation
threshold were negated to form a final cross section set. This modification resulted in
the three highest electronic excitation cross sections being negated. Finally, one should
note that the final cross section set produced via these modifications merely offers an
approximation of some electron transport effects in liquid, and may not be a complete
and accurate representation of a complete set for electron transport in liquid THF.

Input transport data for the electron fluid modeling framework developed in this
study is presented in Figures 5.15 - 5.17 for gaseous and approximate liquid THF
transport. Input data values were computed from steady-state distribution functions
calculated by a multi-term Boltzmann equation solution of the JCU group [193]. This
input data takes into account the most recent advancements in electron-THF scattering
cross sections [193]. These cross sections were refined through discriminating swarm
experiments and calculations to test the accuracy and completeness of the THF cross
section set presented in this Chapter.

5.5 Modeling of electron ionisation fronts in gaseous

and structured THF

Using the input data presented in Figures 5.15 - 5.17, this Section models streamer
formation and propagation in liquid THF. Ambient conditions were assumed [32] to
yield a liquid THF density of n0 = 7.4×1027 m−3 at 293 K. An applied reduced electric
field of −300Td was used. As per the simulations of Chapter 4, an initial narrow
Gaussian pulse of electron/positive ion pairs, formed by an ionisation event prior to
the simulation start, was used as the initial condition where initial velocities, energies,
and energy fluxes were specified as the steady-state values corresponding to the applied
reduced field in the modified liquid data set. Streamer formation in the homogeneous
liquid was considered for these simulations, as opposed to a full interfacial simulation as
done in Chapter 4, because there is little information available on interfacial properties
of THF, such as equilibrium gas-liquid density ratios, and interface widths. Results
were obtained from four different models of liquid streamer transport:
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Figure 5.15: Input transport data of electrons in THF for local-field dependent electron
fluid models. (Top-left) Drift velocity versus reduced field. (Top-right) Electron mean
energy versus reduced field. (Bottom-left) Longitudinal reduced diffusion coefficient
versus reduced field. (Bottom-right) Reduced ionisation and attachment collision rates
versus reduced field.

• 4MM higher order, energy dependent model using approximate electron-liquid
THF transport data,

• LFA drift-diffusion, field dependent model using approximate electron-liquid THF
transport data,

• 4MM higher order, energy dependent model using gas phase electron-THF data
scaled to liquid densities, and

• LFA drift-diffusion, field dependent model using gas phase electron-THF data
scaled to liquid densities.

Results presented in Figures 5.18 - 5.21 demonstrate the transient formation, and in
some cases eventual propagation, of an electron ionisation front in simulated liquid
THF at three times of 0.25 ps, 1.5 ps, and 3.5 ps. These sample times were chosen to
help demonstrate the variations between results of different model assumptions.

Application of the modeling framework, yielding the results presented in Figures
5.18 - 5.21, indicates clear, significant differences between the streamer formation and
propagation using approximate liquid data, as compared to simply scaling gas phase
data. The primary influence of these differences come via the lower ionisation threshold
energy, which acts to accelerate the electric field screening. It was observed that these
approximate liquid modifications allowed a streamer front to form within the liquid
approximately three times quicker than the scaled gas data result. Effects due to
coherent scattering are observable at the back of the propagating streamer tip, where
small, screened values of E/n0 are experienced. This allows sampling of low-field input
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Figure 5.16: Input collision rates of electrons in THF for mean energy dependent
higher order fluid model. Dashed lines denote gas transport, dotted lines denote liquid
transport.

data that is more sensitive to the effects of coherent elastic scattering than high-field
electron transport.

The presence of DEA reactions makes the behaviour of electron transport in THF
fundamentally different to that of argon, which was considered in the previous chapter.
Figure 5.19 demonstrates the formation of negative ions via DEA reactions in THF. As
the collision rate for electron attachment in THF is considerably less than for ionisation,
at high fields and energies found near the front of the streamer, one observes greater
numbers of positive ions, compared to negative ions, preferentially created by the
propagating electron front. As the reduced electric field is screened behind the front,
the LFA model, using modified liquid data, demonstrates slightly lower negative ion
densities compared to the energy dependent 4MM model. This result is an indicator
of non-local electron transport, which can be resolved in the energy-dependent 4MM
model, owing to the longer relaxation time for electron energy compared to that of
electric field screening.

Finally, Figures 5.18 - 5.21 indicate relatively small variations between results of
the 4MM and LFA models when using the approximate liquid input data set described
in Section 5.4. Generally, the models appear to agree on the initial formation of the
electron ionisation front but then deviate slightly as the front propagates through space.
Energy dependent transport, using the 4MM, predicts a faster propagation than the
local reduced field dependent LFA model. This observation is a consequence of the
4MM result resolving non-local electron transport by using electron mean energy, rather
than the rapidly screened reduced electric field, to inform input data values.
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5.6 Chapter Summary

This Chapter has conducted a critical analysis of existing experimental and theoretical
cross sections for electron scattering in THF, to propose a largely complete set of
cross sections in the energy range 0.01-300 eV. This has included the development of
a set of rotational and neutral dissociation cross sections, for which no experimental
measurements currently exist. This complete set of cross sections was then used to
study the transport properties of electron swarms in THF, for a range of reduced electric
fields from 0.01 - 10000 Td. The impact of the relevant cross sections on the transport
properties has been discussed. The analysis also outlined issues associated with swarm
measurements in THF, using current pulsed Townsend techniques, including a proposal
for addressing them.

Using the formulated set of electron-THF cross sections, and appropriate modi-
fications to approximate liquid transport, the differences between gaseous and an
approximate liquid THF were presented and discussed. Simulation of streamer form-
ation and propagation in liquid THF was then performed using this input data, in
conjunction with the proposed modeling framework formulated during this research
project. Clear variations between using approximate liquid data and simply scaling gas
phase THF data were shown, reaffirming the need for accurate input data and careful
formulation of electron transport modeling methods in liquids.

It is hoped that this study serves to motivate further theoretical and experimental
studies of scattering, swarm transport, and interface dynamics of electrons in water and
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Figure 5.18: Electron density propagation within liquid THF. Pink dotted series denotes
the initial condition. Evolution over time denotes major differences when using liquid
data, compared to simply scaling gas phase data.

complex biomolecules to facilitate further understanding of emerging plasma medicine
technologies.
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6
Conclusion

6.1 Summary of results

Emerging plasma technologies, such as plasma medicine and plasma-water treatment,
are reliant on the transfer of charged species from a gas phase plasma discharge, through
an interfacial layer, to a soft-condensed liquid phase, such as tissue or water itself. The
transport of electrons has been identified as a critical component to these applications,
as electron-induced chemistry at the interface is a major source of ions and metastable
reactive species that are delivered to the liquid. While the importance of electron
transport near the interface has been identified, understanding of the physical transport
mechanisms of electrons through the gas-liquid interface has received little attention.
This research offers a first step to address this by proposing a simulation framework to
model electron transport in, and between, gas and liquid discharge media.

To allow benchmarking and immediate application of the methods proposed in this
study, a secondary application of dual phase gas-liquid particle detectors was identified.
As liquid data is available for electron transport in simple atomic liquids, such as
argon and xenon, the process of electron extraction from a detector’s condensed liquid
phase to gas phase can be modeled using the developed framework. Doing so allows
demonstration of the applicability of the proposed framework, in order to facilitate
future application to complex, polar liquids, such as water, found in plasma medicine
applications.

The basis of the simulation framework was a non-local, four moment, fluid model
for electron transport in both gas and liquid discharges. Proposals for parameter free,
physical closure approximations and application of density-dependent liquid phase
electron input data were outlined and validated against kinetic solutions of an analytic
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simple liquid model. By assessing the assumptions employed in the four moment
fluid model, the limitations of describing rapidly varying electron energy distribution
functions through a moment model were also highlighted.

To bridge the gap between input data for gas and liquid phases, the non-linear
dependence of electron transport on the background neutral density, n0, was studied.
To allow modeling of electron transport as a continuum across the interfacial layer, an
approximation rule was proposed. The approximation method was validated against ex-
perimental data, and demonstrated the ability to resolve complex transport phenomena,
particularly in liquid xenon. Implementing this approximation allowed computation
of electron transport data at intermediate n0 values between gas and liquid density
extrema. Modifications of gas phase cross sections were outlined in order to account
for elastic coherent scattering, polarisation potential screening, and variation of the
ionisation cross section threshold.

Application of the proposed fluid model, and input data approximation, was then
made to simulate streamer transport from gas to liquid cryogenic argon phases. Addi-
tionally, extraction of electrons from condensed liquid into a gas layer was simulated to
demonstrate applicability to electron transport in dual-phase liquid particle detectors.
The effects of using scaled gas or accurate liquid input data, as well as assumption of a
smooth or stepped interface transition, were studied for local reduced field dependent
and mean energy dependent fluid models. It was demonstrated that the most reliable
fluid modeling method was the proposed mean energy dependent four moment model.
Application of this model was demonstrated to allow the option to simply assume a
sheer step-function interface instead of a more complex tanh interfacial profile.

Finally, using available experimental and theoretical scattering cross sections for
electrons in gaseous tetrahydrofuran (THF), the first complete cross section set for
electron transport in THF was proposed. Using the available set of gas phase electron-
THF cross sections, and an experimental static structure factor for liquid THF, a
set of modified cross sections for electron transport in liquid THF were proposed to
account for elastic coherent scattering and ionisation potential variation that arise at
condensed phase densities. Electron transport data for gas and liquid phase THF was
computed, and applied as input data to the simulation framework formulated in this
study. Application of the modeling methods to streamer formation and propagation in
liquid THF was demonstrated. As a result, clear differences were demonstrated between
simply scaling gas phase data to liquid densities and using approximate liquid data
accounting for elastic coherent scattering and ionisation threshold energy variation.

6.2 Future research directions

From the preceding research outcomes, a novel framework for simulating electron
transport at gas-liquid interfaces has been demonstrated. While this outcome is a
positive one, there are many remaining questions that need to be probed in future
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research. Some possible directions that logically follow from this present research
include:

Expanding numerical implementation to two dimensional geometries Trans-
port simulations in two dimensions will allow important effects such as charge
accumulation on the surface of a gas-liquid interface and anisotropic diffusion of
species to be incorporated.

Simulation of heavy particle transport For the current research project, rapid
electron dynamics were the primary focus however ion and neutral transport
was not considered. In reality, the transport of ion and excited neutral species
transport is very important for applications like plasma medicine, because much
of the beneficial chemistry is delivered by interactions of these species with tissue.

Inclusion of further scattering processes In addition to the electron scattering
processes considered in this study, further processes such as electron-ion recombin-
ation, ion-ion recombination, and electron-electron scattering should be factored
into the collision data of the proposed model. Additionally, electron capture pro-
cesses in polar liquids, such as solvation, should be accounted for by incorporating
cross sections being developed in present theoretical studies.

Incorporation of structured water transport data As often mentioned in this
research study, the big-picture goal of plasma-tissue interaction research is to
achieve a better model of charged particle transport in human tissue by expanding
upon the standard water vapour assumption. To achieve this, future research
should endeavour to apply the developed framework to electron transport in
structured water, and mixtures of water with biologically relevant molecules to
achieve a more representative tissue analogue.

Experimental studies of transport at the gas-liquid interface To supplement
theoretical studies, experimental studies of plasma interactions with liquid surfaces
should be further developed. Diagnostic measurements of species transport at
the interface, as well as deformation of the interface itself, are key areas of focus
that could better inform models, such as that proposed in this present study.
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A
Flux-corrected transport methods

for hyperbolic PDEs

A.1 Introduction

In order to solve the electron fluid models used throughout this research an accurate
numerical method was required. Whether a solution is required for a simple continuity
equation for electron density, or a four moment model (for electron density, flux, energy
density, and energy density flux) the systems of equations used in this research can be
generalised as the following transport equation

∂u
∂t

+∇ · F = S, (A.1)

where u = [u1, u2, ..., un] is a state vector of conserved quantities in space and time,
F is the transported flux of each state variable, and S is a source term for each state
variable.

In practical cases, where an analytic solution cannot be obtained due to complex
geometries, non-linear fluxes or non-trivial source terms, the generic transport equation
(A.1) must be solved numerically. To ensure that a numerical scheme produces physically
realistic solutions and to avoid unintentional introduction of numerical artefacts into
solution of (A.1), it was therefore pertinent to have complete control over numerical
solutions used in this project. The choice to develop a custom numerical scheme was
informed by the following requirements for the transport problems being studied in
this research project.
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Conservation As charged particle densities explicitly inform the self-consistent electric
field computed via Maxwell’s equations, a numerical scheme must be written to
guarantee conservation of particles (in the absence of non-conservative collisional
processes such as ionisation or attachment). To ensure this is the case, conservation
unit-testing must be performed on any proposed numerical scheme to ensure
particles are not gained or lost through numerical error.

Resolution of sharp gradients It has been noted in the literature that when sim-
ulating ionisation front formation and propagation there are inherently high
gradients at the front of the streamer [95, 104]. In order to accurately resolve
real transport, and not conflate numerical diffusion effects as real transport phe-
nomena, a proposed numerical scheme must be able to resolve sharp gradients
without: (i) excessive diffusion or smearing of the solution, and (ii) introducing
numerical oscillations to the solution.

Positivity Quantities such as density or energy require positivity in their solution, as
any negative value predicted in a numerical solution is non-physical. Therefore
any proposed solution scheme must ensure that, when required by the physics of
the transported variable, a guaranteed positive solution is produced.

A.1.1 Finite difference methods

The method of finite differences (FD) is often the simplest discretisation to implement
when solving one, or many, differential equations like the generic transport equation
(A.1). FD is based on local Taylor series approximations about fixed grid points. FD
methods have gained popularity for their relative simplicity and practically, pioneered
in the computational fluid dynamics community largely due to the seminal works of
Lax & Wendroff [196,197] and Godunov [198]. Since then, much work has been done
on refining the accuracy and efficiency of FD techniques, resulting in concise guides on
how to construct a discretising scheme and compute grid point weights for approximate
derivatives [199].

Although a popular approach, there are some difficulties in implementing FD
methods for certain problems where discontinuities exist in solutions, conservation of
quantities at the discrete level is vital, and accurate representation of fluxes, particularly
at boundaries when implementing boundary conditions, is of importance. In order
to combat the disadvantages of the FD method, while still leveraging the theoretical
simplicity of the discretisation scheme, the method of flux-corrected transport (FCT)
was employed.

A.2 Flux-Corrected Transport schemes

First define a one-dimensional discrete form of the general transport equation (A.1),

un+1
j − unj

∆t
+

1

∆xj

(
F̃j+ 1

2
− F̃j− 1

2

)
= Sj , (A.2)
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where the temporal derivative has been discretised by a first order forward difference,
spatial divergence operator has been discretised using the difference of conservative
fluxes, F̃j± 1

2
, taken at interface points between discretisation points, xj , as per Figure

A.1.

Cell interface

∆xj

Cell value

uj+1/2

xj+1/2

uj

xj

uj+1

xj+1

uj-3/2

xj-3/2

uj-1
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uj-1/2

xj-1/2

Fj-1/2 Fj+1/2

uj+3/2

xj+3/2 x

u
n

Interfacial

conservative flux

Figure A.1: Spatial discretisation scheme employed for FCT

Broadly speaking, FCT schemes are among a family of numerical methods that
aim to use a high order approximations to the spatial flux F̃j± 1

2
where possible, but

in regions where a high order approximation may introduce errors or noise, due to
discontinuities or oscillations, a lower order approximation is used as a fail-safe. In
addition to FCT, weighted essentially non-oscillatory (WENO) methods [200] are often
used in solution of hyperbolic systems of equations. Where these numerical methods
deviate are in the way the conservative flux approximations, F̃j± 1

2
, are made.

A.2.1 FCT algorithm

The authors of the original FCT algorithm [150] designed the method to have the
following properties:

• linearly stable in all cases of interest,

• mirror conservation properties of the physics,

• ensure positivity when needed,

• be reasonably accurate,

• be computationally efficient, and

• be independent of specific properties of one problem area.

The algorithm for FCT can be broken down as follows:

1. Compute the low order solution uL ,

2. Compute the low order numerical fluxes F̃L
j+ 1

2

and F̃L
j− 1

2

,

3. Compute higher order numerical fluxes F̃H
j+ 1

2

and F̃H
j− 1

2

,
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4. Compute the anti-diffusive fluxes

Aj± 1
2
= FH

j± 1
2

− FL
j± 1

2

, (A.3)

5. Limit the anti-diffusive flux to avoid amplifying existing extrema in the lower
order solution or adding new extrema via the higher order solution

AC
j± 1

2

= Cj± 1
2
Aj± 1

2
, (A.4)

6. Apply the limited anti-diffusive fluxes to find the new solution

un+1
j = uLj − ∆t

∆xj

[
AC
j+ 1

2

−AC
j− 1

2

]
+∆tSj .

At the flux limiting stage of the FCT algorithm, described in equation (A.4), each grid
point is assigned a weight to dictate how much of the high and lower order methods that
contribute to the final approximation to the flux. If Cj± 1

2
= 0 then effectively the lower

order solution is taken, while if Cj± 1
2
= 1 then the full higher order solution is taken.

Practically, in order to limit artificial numerical diffusion introduced in a lower order
solution, or limit oscillations introduced by higher order solutions, a non-linear series
of values for Cj± 1

2
are computed at the flux-limiting stage. The original flux-limiter of

Boris and Book is implemented in this work

AC
j+ 1

2

= sj+ 1
2

max
{
0,min

[
|Aj+ 1

2
|, sj+ 1

2
(uLj+2 − uLj+1)∆xj+ 3

2
, sj+ 1

2
(uLj − uLj−1)∆xj− 1

2

]}
(A.5)

where sj+ 1
2
=

+1 if Aj+ 1
2
≥ 0

−1 if Aj+ 1
2
< 0

.

This limiter was designed to (i) avoid introducing oscillations that are not present
in the lower order solution, and (ii) avoid amplifying extrema that present in the lower
order solution. To do this, the flux-limiting process compares the sign of adjacent
lower order fluxes to that of the proposed antidiffusive flux (A.3). If adjacent gradients
are permissible according to the limiter (A.5), then the anti-diffusive flux is taken,
otherwise the higher order flux is cancelled and the lower-order solution is taken. Some
examples of applying the Boris-Book limiter are shown in Figure A.2.
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Direction of Aj+1/2

x

u
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xj-1 j+1 j+2j
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Figure A.2: Examples of flux limiting outcomes as per the Boris-Book limiter. Evaluat-
ing cases A and C with (A.5) allows a limited flux to be applied, as non-zero values are
produced by the min-max operator. Cases B and D produce a cancelled zero flux as
the signs of adjacent gradients do not agree.

A.2.2 Explicit versus implicit discretisation

Before lower and higher order flux approximations are chosen and implemented, the
choice of implicit or explicit FD approximations should be made. Often, this choice
is dictated by the physics of the problems at hand. For the work described in this
thesis, the ability to accurately resolve sharp-gradient, transient ionisation fronts
was important. Within these problems, there are also distinctly different physical
timescales at play, for example between collisional momentum and energy relaxation. To
accommodate these physical constraints, the option of using implicit FD approximations
was avoided as it was noted in literature that when multiple timescales are present in
a non-linear transport problem, information transfer can occur faster than physically
possible [150–152]. Furthermore, it was noted that when employing implicit schemes
shock front resolution can be excessively diffusive, and error introduced via boundary
conditions can propagate very quickly compared to explicit schemes [150–152,200,201].
In conclusion, the choice to employ simpler explicit discretisation schemes was made as
a conservative decision.
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A.2.3 Spatial discretisation

Lower order flux

In this work a first order upwind scheme was used to approximate lower order solution,
uL , and fluxes, F̃L

j± 1
2

. The approximation for low order fluxes are given by

F̃L
j+ 1

2

= 0.5(1 + wj)Fj + 0.5(1− wj)Fj+1 −
1

8

∆xj+ 1
2

∆t
(uj+1 − uj) , (A.6)

F̃L
j− 1

2

= 0.5(1 + wj)Fj−1 + 0.5(1− wj)Fj −
1

8

∆xj− 1
2

∆t
(uj − uj−1) , (A.7)

where wj is the sign of the local instantaneous variable ’velocity’.
For the simulations implemented in this work, a naive Roe type scheme [152] has

been used to approximate the local instantaneous variable velocities, and thus wj , when
evaluating (A.6)-(A.7). Ideally, a Jacobian matrix for the system would be computed
to diagonalise the system into a linear system of characteristic variables. Through this
transformation, local advection velocities for the characterstic variables can be obtained
via the eigenvalues of the Jacobian. However, given that the system of transport
equations being solved in this work are highly non-linear and stiff, the process of
computing Jacobians at each time step and transforming the system of equations would
be excessively slow. To circumvent any inaccuracies or instabilities introduced by the
simple Roe scheme, conservatively small time steps were implemented.

To ensure positivity in the solution, diffusive correction terms

1

8

∆xj+ 1
2

∆t
(uj+1 − uj) ,

1

8

∆xj− 1
2

∆t
(uj − uj−1) ,

are used as per the recommendation of Boris and Book [150,152].

Higher order flux - Uniform grid

For solution domains that employ a uniformly spaced spatial grid, a fourth order,
conservative, biased flux was used. The FD stencil was borrowed from the work of
Zalesak [151,152]

F̃H
j+ 1

2
=

7

12
(Fj+1 + Fj)−

1

12
(Fj+2 + Fj−1)−

1

8

∆xj+ 1
2

∆t

[
3

16
(uj+1 − uj)−

1

16
(uj+2 − uj−1)

]
, (A.8)

F̃H
j− 1

2
=

7

12
(Fj−1 + Fj)−

1

12
(Fj−2 + Fj+1)−

1

8

∆xj− 1
2

∆t

[
3

16
(uj − uj−1)−

1

16
(uj+1 − uj−2)

]
, (A.9)

where the same form of diffusive correction terms of Boris and Book [150, 152] have
been employed.

Higher order flux - Non-uniform grid

For a homogenous gas or liquid simulation, a uniformly spaced grid is quite adequate.
However, when considering electron transport between either extreme, across an in-
terface layer, variably sized spatial steps were required. Such a discretisation is

Appendix A. Flux-corrected transport methods for hyperbolic PDEs 180



Garland, Nathan Electron transport modeling in gas and liquid media

demonstrated in Figure A.3, where fine grid points were employed at the interfacial
region.
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Figure A.3: Variable spatial grid implemented for a typical liquid to gas electron
transport simulation

Given a solution domain with non-uniformly spaced grid points

x 1
2
< x 3

2
< x 5

2
< ... < xN− 1

2
< xN+ 1

2
,

representing interface points between adjacent cells, one can define cell centers as

Ii =
[
xi− 1

2
, xi+ 1

2

]
,

centered at the positions
xi =

1

2

(
xi− 1

2
+ xi+ 1

2

)
,

with variably spaced

∆xi = xi+ 1
2
− xi− 1

2

Using the formulation of Shu [200], higher order numerical fluxes at interface points
can be computed

F̃i+ 1
2
=

k−1∑
j=0

crjF̃i−r+j ,

F̃i− 1
2
=

k−1∑
j=0

crjF̃i+r−j

where the weights are computed as
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crj =



k∑
m=j+1

k∑
l = 0

l 6= m

k∏
q = 0

q 6= m, l

(
xi+ 1

2
− xi−r+q− 1

2

)

k∏
l = 0

l 6= m

(
xi−r+m− 1

2
− xi−r+l− 1

2

)


∆xi−r+j

given a variably spaced grid.
If uniform grid spacing is used the weights can be computed analytically, up to

arbitrary order and still maintain conservation. If variable grid spacing is used, it
can be shown [200] that only 2nd order accuracy can be obtained while maintaining
conservation.

Boundary conditions

For the bulk of the simulations performed in this study open boundary conditions were
implemented. This was done to allow information originating in the model domain
to leave the domain without impacting the interior of the solution. Practically this
was done via absorbing boundary conditions for each of the state variables for density,
particle flux, energy density, and energy density flux [182,201].

A.2.4 Time discretisation

For the current treatment, particular care has been taken with the spatial discretisation
methods. Having taken care to treat spatial discretisation with FCT methods, any
standard textbook time-integration routine can be used to discretise and then solve the
system of hyperbolic transport equations. For this research both Euler’s method, O (∆t),
and a fourth order Runge-Kutta method, O

(
∆t4

)
, were employed. For development

simulations, Euler’s method was often used, and for generation of final figures and
results for publication the Runge-Kutta method was used for higher accuracy. To ensure
the approximations employed in this method do not excessively impact the numerical
solutions, a conservative CFL condition was used through this work. Often, a value of
0.05 was used to ensure small time steps were used and stability of the solution was
preserved.

A.3 Unit testing and validation

A.3.1 Square wave advection and advection-diffusion of a Gaussian pulse

Square wave and Gaussian pulse transport are typical benchmark simulations performed
for numerical schemes. These two problems offer validation of a scheme’s ability to
resolve discontinuities and limit numerical diffusion introduced by low-order methods.

Appendix A. Flux-corrected transport methods for hyperbolic PDEs 182



Garland, Nathan Electron transport modeling in gas and liquid media

Square wave advection was simulated by solving

∂u

∂t
+ c

∂u

∂x
= 0 (A.10)

where u is a particle density and c is the speed of advection. An initial condition of a
square wave was imposed, and as advection is the only transport phenomena present in
equation (A.10) the analytic solution can be found by simply transporting the initial
condition in space as per the constant advection speed.

Similarly, the advection-diffusion of a Gaussian pulse was simulated by solving

∂u

∂t
+ c

∂u

∂x
+D

∂2u

∂x2
= 0, (A.11)

where D is an arbitrary diffusion coefficient. This model can be applied to electron
transport in the time of flight experiment, schematically described in Figure A.4. Here,
a point flux of N particles leaves one electrode and travels into a neutral gas of infinite
spatial extent under the influence of a constant electric field.

E

L

Current

collecting

electrode

Voltage source

Emitting

electrode

Particle swarm

z

Figure A.4: Simplified schematic of a time of flight experiment

The solution of this partial differential equation can be computed analytically [118]
and is given by

n (z, t) =
N√

4πDLt
exp

(
−(z −Wzt)

2

4DLt

)
. (A.12)

Although limited in practical plasma modeling, the simplified geometry and physics
of this problem offers a useful benchmark for numerical routines. Practically, this means
comparing the output of a numerical solver to that of (A.12) in order to determine if
the implemented numerical scheme is accurate and captures the necessary physics for
the time of flight problem.

Benchmark simulations were performed by advancing numerical solutions of (A.10)
and (A.11) in dimensionless space-time. Advection speed, c, and diffusion rate, D, were
assumed to be unity.

The benefit of FCT compared to a simple first order upwind scheme is demonstrated
in Figure A.5, where resolution of discontinuities and reduction in numerical diffusion
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are immediately apparent between the top and bottom solutions.
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Figure A.5: Example unit test results for: (top) a 1st order upwind spatial discretisation,
(bottom) a FCT solution where 4th order central differences are limited by a 1st order
upwind scheme.

In these benchmark simulations, the evolution of numerical error was monitored, and
the conservation of the scheme was recorded at each time step. The error propagation
and conservative properties of the Gaussian pulse solutions presented in Figure A.5 are
shown in Figure A.6. From this one can see the reduction in error propagation due to
FCT, and for both schemes the loss of particle density is minimal to working numerical
accuracy.
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Figure A.6: Numerical error and conservation count of (top) a 1st order upwind spatial
discretisation, (bottom) a FCT solution where 4th order central differences are limited
by a 1st order upwind scheme.

A.3.2 Sod's shock tube

To test the application of the developed numerical scheme to a system of transport
equations, Euler’s equations were solved for a well known benchmark problem, Sod’s
shock tube. In this test problem, a one dimensional domain is given a discontinuous
initial condition for particle density, ρ, and pressure, P . To the left of the half-way
point, the density and pressure are unity and the right-hand-side of the domain is zero.
The initial particle velocity, u, was zero.
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To simulate the evolution of this system Euler’s equations are solved for particle
density, flux, ρu, and energy density, ρE

∂

∂t

 ρ

ρu

ρE

+∇ ·

 ρu

ρuu+ P

ρEu+ Pu

 = 0, (A.13)

along with the state equation

P = (γ − 1)

(
ρE − 1

2
ρu2
)
, (A.14)

where γ = 1.4.
To validate the numerical solution of the system of equations A.13, time was evolved

to t = 0.17 and solutions were compared to an established solution provided by a Roe
MUSCL scheme [202]. Results for this system are shown in Figure A.7 for both a first
order upwind method, and the final FCT method employed in this work.
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Figure A.7: Sod’s shock tube solutions for: (top) a 1st order upwind spatial discretisa-
tion, (bottom) a FCT solution where 4th order central differences are limited by a 1st
order upwind scheme.

The results of Figure A.7 indicate the low order method produces significant
smearing of the solution near discontinuities of the known solution. In contrast, the
FCT method, using a fourth order flux approximation, is able to resolve sharp gradients
with greater success.

A.4 Poisson equation solution

Considering a three-point grid centered on xi with points to the left, xi−1, and right,
xi+1, such that xi−1 < xi < xi+1, the variably sized steps between adjacent grid points
to the left and right are given by hL = xi − xi−1 and hR = xi+1 − xi respectively. For
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this grid, one must seek to construct FD stencils, for the necessary spatial derivatives, as
a function of the arbitrarily sized spatial steps. Using these FD stencils, the continuous
Poisson equation for electric potential can be discretized and subsequently solved as a
system of linear equations

d2V

dx2
= f (x) ,

⇓

D2V = f,

where the difference matrix, D2, is a discretized second derivative operator.
Using the method of undetermined coefficients and introducing Taylor series ex-

pansions, one can eliminate zeroth and second derivatives to obtain an expression of
approximately second order accuracy, O (hLhR),

u′′ (xi) ≈
2

hL (hL + hR)
u (xi−1)−

[
2

hL (hL + hR)
+

2

hR (hL + hR)

]
u (xi)+

2

hR (hL + hR)
u (xi+1)+O (hR − hL) ,

where the error term is O (hR − hL) =
hR−hL

3 u′′′ (xi).

A.5 Treating zero density regions

When an electron ionisation front is propagating into free-space, regions of very small
electron density will be approached by the traveling front. These regions of space
can pose an issue when computing intensive variables from extensive computational
variables. A prime example of this is the computation of mean electron energy, used to
interpolate input data at each time-step,

〈ε〉 =
nε
n.

To remedy this situation when computing an arbitrary intensive variable, 〈ψ〉, from
the extensive, density scaled quantity, nψ = n 〈ψ〉, the following regularisation [95, 146]
was used in this work

〈ψ〉 =
nψ + η0ψ̃

n+ η0
,

where η0 is a small number chosen to denote the minimum electron density at which
to revert to the value ψ̃, which is a representative value that zero density regions
may revert to. In this study, values of ψ̃ were assigned to be the steady-state values
evaluated at the background reduced field experienced in the low-density region.

A.6 Scaling variables

To assist the computational implementation of numerical solutions needed for this
work, all variables were scaled by appropriate physical scales. One benefit of scaling
SI variables, to ones of smaller magnitude, is to reduce the opportunity for numerical
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errors to be introduced due to the limitations of double precision arithmetic limitations.
Furthermore, it is beneficial to introduce the background neutral particle density, n0, via
scaling to form “reduced” versions of variables that appear in the systems of equations.
Reduced quantities are either multiplied by n0, e.g. reduced diffusion coefficient n0D,
or divided by n0, e.g. reduced collision frequency ν/n0, in order to obtain quantities
normalised by the density of the system.

An arbitrary scattering mean free path is defined as the length scale. For the mean
free path, scattering is assumed in a neutral gas of density n0 with a representative
scattering cross section of σ0 = 1Å2.

L̃ =
1

σ0n0
,

z = L̃z̃.

The electron mass is chosen as the mass scale

M̃ = me,

m = M̃m̃.

An energy of 1 eV is simply chosen as the energy scale

ẽ = qe,

ε = ẽε̃.

A time scale can be computed via the chosen mass, length, and energy scales

T̃ =
1

σ0n0

√
M̃

2ẽ
,

t = T̃ t̃.
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